From e26434979adc33bd949566ba7bf02dff64e80a3e Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Tue, 2 Oct 2012 00:19:43 -0400 Subject: cdec cleanup, remove bayesian stuff, parsing stuff --- gi/pf/align-tl.cc | 339 ------------------------------------------------------ 1 file changed, 339 deletions(-) delete mode 100644 gi/pf/align-tl.cc (limited to 'gi/pf/align-tl.cc') diff --git a/gi/pf/align-tl.cc b/gi/pf/align-tl.cc deleted file mode 100644 index f6608f1d..00000000 --- a/gi/pf/align-tl.cc +++ /dev/null @@ -1,339 +0,0 @@ -#include -#include -#include - -#include -#include -#include - -#include "backward.h" -#include "array2d.h" -#include "base_distributions.h" -#include "monotonic_pseg.h" -#include "conditional_pseg.h" -#include "trule.h" -#include "tdict.h" -#include "stringlib.h" -#include "filelib.h" -#include "dict.h" -#include "sampler.h" -#include "mfcr.h" -#include "corpus.h" -#include "ngram_base.h" -#include "transliterations.h" - -using namespace std; -using namespace tr1; -namespace po = boost::program_options; - -void InitCommandLine(int argc, char** argv, po::variables_map* conf) { - po::options_description opts("Configuration options"); - opts.add_options() - ("samples,s",po::value()->default_value(1000),"Number of samples") - ("input,i",po::value(),"Read parallel data from") - ("s2t", po::value(), "character level source-to-target prior transliteration probabilities") - ("t2s", po::value(), "character level target-to-source prior transliteration probabilities") - ("max_src_chunk", po::value()->default_value(4), "Maximum size of translitered chunk in source") - ("max_trg_chunk", po::value()->default_value(4), "Maximum size of translitered chunk in target") - ("expected_src_to_trg_ratio", po::value()->default_value(1.0), "If a word is transliterated, what is the expected length ratio from source to target?") - ("random_seed,S",po::value(), "Random seed"); - po::options_description clo("Command line options"); - clo.add_options() - ("config", po::value(), "Configuration file") - ("help,h", "Print this help message and exit"); - po::options_description dconfig_options, dcmdline_options; - dconfig_options.add(opts); - dcmdline_options.add(opts).add(clo); - - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - if (conf->count("config")) { - ifstream config((*conf)["config"].as().c_str()); - po::store(po::parse_config_file(config, dconfig_options), *conf); - } - po::notify(*conf); - - if (conf->count("help") || (conf->count("input") == 0)) { - cerr << dcmdline_options << endl; - exit(1); - } -} - -boost::shared_ptr prng; - -struct LexicalAlignment { - unsigned char src_index; - bool is_transliteration; - vector > derivation; -}; - -struct AlignedSentencePair { - vector src; - vector trg; - vector a; - Array2D posterior; -}; - -struct HierarchicalWordBase { - explicit HierarchicalWordBase(const unsigned vocab_e_size) : - base(prob_t::One()), r(1,1,1,1,0.66,50.0), u0(-log(vocab_e_size)), l(1,prob_t::One()), v(1, prob_t::Zero()) {} - - void ResampleHyperparameters(MT19937* rng) { - r.resample_hyperparameters(rng); - } - - inline double logp0(const vector& s) const { - return Md::log_poisson(s.size(), 7.5) + s.size() * u0; - } - - // return p0 of rule.e_ - prob_t operator()(const TRule& rule) const { - v[0].logeq(logp0(rule.e_)); - return r.prob(rule.e_, v.begin(), l.begin()); - } - - void Increment(const TRule& rule) { - v[0].logeq(logp0(rule.e_)); - if (r.increment(rule.e_, v.begin(), l.begin(), &*prng).count) { - base *= v[0] * l[0]; - } - } - - void Decrement(const TRule& rule) { - if (r.decrement(rule.e_, &*prng).count) { - base /= prob_t(exp(logp0(rule.e_))); - } - } - - prob_t Likelihood() const { - prob_t p; p.logeq(r.log_crp_prob()); - p *= base; - return p; - } - - void Summary() const { - cerr << "NUMBER OF CUSTOMERS: " << r.num_customers() << " (d=" << r.discount() << ",s=" << r.strength() << ')' << endl; - for (MFCR<1,vector >::const_iterator it = r.begin(); it != r.end(); ++it) - cerr << " " << it->second.total_dish_count_ << " (on " << it->second.table_counts_.size() << " tables) " << TD::GetString(it->first) << endl; - } - - prob_t base; - MFCR<1,vector > r; - const double u0; - const vector l; - mutable vector v; -}; - -struct BasicLexicalAlignment { - explicit BasicLexicalAlignment(const vector >& lets, - const unsigned words_e, - const unsigned letters_e, - vector* corp) : - letters(lets), - corpus(*corp), - //up0(words_e), - //up0("en.chars.1gram", letters_e), - //up0("en.words.1gram"), - up0(letters_e), - //up0("en.chars.2gram"), - tmodel(up0) { - } - - void InstantiateRule(const WordID src, - const WordID trg, - TRule* rule) const { - static const WordID kX = TD::Convert("X") * -1; - rule->lhs_ = kX; - rule->e_ = letters[trg]; - rule->f_ = letters[src]; - } - - void InitializeRandom() { - const WordID kNULL = TD::Convert("NULL"); - cerr << "Initializing with random alignments ...\n"; - for (unsigned i = 0; i < corpus.size(); ++i) { - AlignedSentencePair& asp = corpus[i]; - asp.a.resize(asp.trg.size()); - for (unsigned j = 0; j < asp.trg.size(); ++j) { - const unsigned char a_j = prng->next() * (1 + asp.src.size()); - const WordID f_a_j = (a_j ? asp.src[a_j - 1] : kNULL); - TRule r; - InstantiateRule(f_a_j, asp.trg[j], &r); - asp.a[j].is_transliteration = false; - asp.a[j].src_index = a_j; - if (tmodel.IncrementRule(r, &*prng)) - up0.Increment(r); - } - } - cerr << " LLH = " << Likelihood() << endl; - } - - prob_t Likelihood() const { - prob_t p = tmodel.Likelihood(); - p *= up0.Likelihood(); - return p; - } - - void ResampleHyperparemeters() { - tmodel.ResampleHyperparameters(&*prng); - up0.ResampleHyperparameters(&*prng); - cerr << " (base d=" << up0.r.discount() << ",s=" << up0.r.strength() << ")\n"; - } - - void ResampleCorpus(); - - const vector >& letters; // spelling dictionary - vector& corpus; - //PhraseConditionalUninformativeBase up0; - //PhraseConditionalUninformativeUnigramBase up0; - //UnigramWordBase up0; - //HierarchicalUnigramBase up0; - HierarchicalWordBase up0; - //CompletelyUniformBase up0; - //FixedNgramBase up0; - //ConditionalTranslationModel tmodel; - //ConditionalTranslationModel tmodel; - //ConditionalTranslationModel tmodel; - //ConditionalTranslationModel tmodel; - MConditionalTranslationModel tmodel; - //ConditionalTranslationModel tmodel; - //ConditionalTranslationModel tmodel; -}; - -void BasicLexicalAlignment::ResampleCorpus() { - static const WordID kNULL = TD::Convert("NULL"); - for (unsigned i = 0; i < corpus.size(); ++i) { - AlignedSentencePair& asp = corpus[i]; - SampleSet ss; ss.resize(asp.src.size() + 1); - for (unsigned j = 0; j < asp.trg.size(); ++j) { - TRule r; - unsigned char& a_j = asp.a[j].src_index; - WordID f_a_j = (a_j ? asp.src[a_j - 1] : kNULL); - InstantiateRule(f_a_j, asp.trg[j], &r); - if (tmodel.DecrementRule(r, &*prng)) - up0.Decrement(r); - - for (unsigned prop_a_j = 0; prop_a_j <= asp.src.size(); ++prop_a_j) { - const WordID prop_f = (prop_a_j ? asp.src[prop_a_j - 1] : kNULL); - InstantiateRule(prop_f, asp.trg[j], &r); - ss[prop_a_j] = tmodel.RuleProbability(r); - } - a_j = prng->SelectSample(ss); - f_a_j = (a_j ? asp.src[a_j - 1] : kNULL); - InstantiateRule(f_a_j, asp.trg[j], &r); - if (tmodel.IncrementRule(r, &*prng)) - up0.Increment(r); - } - } - cerr << " LLH = " << Likelihood() << endl; -} - -void ExtractLetters(const set& v, vector >* l, set* letset = NULL) { - for (set::const_iterator it = v.begin(); it != v.end(); ++it) { - vector& letters = (*l)[*it]; - if (letters.size()) continue; // if e and f have the same word - - const string& w = TD::Convert(*it); - - size_t cur = 0; - while (cur < w.size()) { - const size_t len = UTF8Len(w[cur]); - letters.push_back(TD::Convert(w.substr(cur, len))); - if (letset) letset->insert(letters.back()); - cur += len; - } - } -} - -void Debug(const AlignedSentencePair& asp) { - cerr << TD::GetString(asp.src) << endl << TD::GetString(asp.trg) << endl; - Array2D a(asp.src.size(), asp.trg.size()); - for (unsigned j = 0; j < asp.trg.size(); ++j) - if (asp.a[j].src_index) a(asp.a[j].src_index - 1, j) = true; - cerr << a << endl; -} - -void AddSample(AlignedSentencePair* asp) { - for (unsigned j = 0; j < asp->trg.size(); ++j) - asp->posterior(asp->a[j].src_index, j)++; -} - -void WriteAlignments(const AlignedSentencePair& asp) { - bool first = true; - for (unsigned j = 0; j < asp.trg.size(); ++j) { - int src_index = -1; - int mc = -1; - for (unsigned i = 0; i <= asp.src.size(); ++i) { - if (asp.posterior(i, j) > mc) { - mc = asp.posterior(i, j); - src_index = i; - } - } - - if (src_index) { - if (first) first = false; else cout << ' '; - cout << (src_index - 1) << '-' << j; - } - } - cout << endl; -} - -int main(int argc, char** argv) { - po::variables_map conf; - InitCommandLine(argc, argv, &conf); - - if (conf.count("random_seed")) - prng.reset(new MT19937(conf["random_seed"].as())); - else - prng.reset(new MT19937); -// MT19937& rng = *prng; - - vector > corpuse, corpusf; - set vocabe, vocabf; - corpus::ReadParallelCorpus(conf["input"].as(), &corpusf, &corpuse, &vocabf, &vocabe); - cerr << "f-Corpus size: " << corpusf.size() << " sentences\n"; - cerr << "f-Vocabulary size: " << vocabf.size() << " types\n"; - cerr << "f-Corpus size: " << corpuse.size() << " sentences\n"; - cerr << "f-Vocabulary size: " << vocabe.size() << " types\n"; - assert(corpusf.size() == corpuse.size()); - - vector corpus(corpuse.size()); - for (unsigned i = 0; i < corpuse.size(); ++i) { - corpus[i].src.swap(corpusf[i]); - corpus[i].trg.swap(corpuse[i]); - corpus[i].posterior.resize(corpus[i].src.size() + 1, corpus[i].trg.size()); - } - corpusf.clear(); corpuse.clear(); - - vocabf.insert(TD::Convert("NULL")); - vector > letters(TD::NumWords() + 1); - set letset; - ExtractLetters(vocabe, &letters, &letset); - ExtractLetters(vocabf, &letters, NULL); - letters[TD::Convert("NULL")].clear(); - - // TODO configure this - const int max_src_chunk = conf["max_src_chunk"].as(); - const int max_trg_chunk = conf["max_trg_chunk"].as(); - const double s2t_rat = conf["expected_src_to_trg_ratio"].as(); - const BackwardEstimator be(conf["s2t"].as(), conf["t2s"].as()); - Transliterations tl(max_src_chunk, max_trg_chunk, s2t_rat, be); - - cerr << "Initializing transliteration graph structures ...\n"; - for (int i = 0; i < corpus.size(); ++i) { - const vector& src = corpus[i].src; - const vector& trg = corpus[i].trg; - for (int j = 0; j < src.size(); ++j) { - const vector& src_let = letters[src[j]]; - for (int k = 0; k < trg.size(); ++k) { - const vector& trg_let = letters[trg[k]]; - tl.Initialize(src[j], src_let, trg[k], trg_let); - //if (src_let.size() < min_trans_src) - // tl.Forbid(src[j], src_let, trg[k], trg_let); - } - } - } - cerr << endl; - tl.GraphSummary(); - - return 0; -} -- cgit v1.2.3