From 105a52a8d37497fe69a01a7de771ef9b9300cd71 Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Fri, 11 Nov 2011 17:12:39 -0500 Subject: optionally sample from forest to get training instances, rather than k-best it --- decoder/Makefile.am | 1 + decoder/hg_sampler.cc | 73 +++++++++++++++++++++++++++++++++++++++++++++++++++ decoder/hg_sampler.h | 27 +++++++++++++++++++ 3 files changed, 101 insertions(+) create mode 100644 decoder/hg_sampler.cc create mode 100644 decoder/hg_sampler.h (limited to 'decoder') diff --git a/decoder/Makefile.am b/decoder/Makefile.am index 6b9360d8..30eaf04d 100644 --- a/decoder/Makefile.am +++ b/decoder/Makefile.am @@ -51,6 +51,7 @@ libcdec_a_SOURCES = \ hg_io.cc \ decoder.cc \ hg_intersect.cc \ + hg_sampler.cc \ factored_lexicon_helper.cc \ viterbi.cc \ lattice.cc \ diff --git a/decoder/hg_sampler.cc b/decoder/hg_sampler.cc new file mode 100644 index 00000000..cdf0ec3c --- /dev/null +++ b/decoder/hg_sampler.cc @@ -0,0 +1,73 @@ +#include "hg_sampler.h" + +#include + +#include "viterbi.h" +#include "inside_outside.h" + +using namespace std; + +struct SampledDerivationWeightFunction { + typedef double Weight; + explicit SampledDerivationWeightFunction(const vector& sampled) : sampled_edges(sampled) {} + double operator()(const Hypergraph::Edge& e) const { + return static_cast(sampled_edges[e.id_]); + } + const vector& sampled_edges; +}; + +void HypergraphSampler::sample_hypotheses(const Hypergraph& hg, + unsigned n, + MT19937* rng, + vector* hypos) { + hypos->clear(); + hypos->resize(n); + + // compute inside probabilities + vector node_probs; + Inside(hg, &node_probs, EdgeProb()); + + vector sampled_edges(hg.edges_.size()); + queue q; + SampleSet ss; + for (unsigned i = 0; i < n; ++i) { + fill(sampled_edges.begin(), sampled_edges.end(), false); + // sample derivation top down + assert(q.empty()); + Hypothesis& hyp = (*hypos)[i]; + SparseVector& deriv_features = hyp.fmap; + q.push(hg.nodes_.size() - 1); + prob_t& model_score = hyp.model_score; + model_score = prob_t::One(); + while(!q.empty()) { + unsigned cur_node_id = q.front(); + q.pop(); + const Hypergraph::Node& node = hg.nodes_[cur_node_id]; + const unsigned num_in_edges = node.in_edges_.size(); + unsigned sampled_edge_idx = 0; + if (num_in_edges == 1) { + sampled_edge_idx = node.in_edges_[0]; + } else { + assert(num_in_edges > 1); + ss.clear(); + for (unsigned j = 0; j < num_in_edges; ++j) { + const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]]; + prob_t p = edge.edge_prob_; // edge weight + for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k) + p *= node_probs[edge.tail_nodes_[k]]; // tail node inside weight + ss.add(p); + } + sampled_edge_idx = node.in_edges_[rng->SelectSample(ss)]; + } + sampled_edges[sampled_edge_idx] = true; + const Hypergraph::Edge& sampled_edge = hg.edges_[sampled_edge_idx]; + deriv_features += sampled_edge.feature_values_; + model_score *= sampled_edge.edge_prob_; + //sampled_deriv->push_back(sampled_edge_idx); + for (unsigned j = 0; j < sampled_edge.tail_nodes_.size(); ++j) { + q.push(sampled_edge.tail_nodes_[j]); + } + } + Viterbi(hg, &hyp.words, ESentenceTraversal(), SampledDerivationWeightFunction(sampled_edges)); + } +} diff --git a/decoder/hg_sampler.h b/decoder/hg_sampler.h new file mode 100644 index 00000000..bf4e1eb0 --- /dev/null +++ b/decoder/hg_sampler.h @@ -0,0 +1,27 @@ +#ifndef _HG_SAMPLER_H_ +#define _HG_SAMPLER_H_ + + +#include +#include "sparse_vector.h" +#include "sampler.h" +#include "wordid.h" + +class Hypergraph; + +struct HypergraphSampler { + + struct Hypothesis { + std::vector words; + SparseVector fmap; + prob_t model_score; // log unnormalized probability + }; + + static void + sample_hypotheses(const Hypergraph& hg, + unsigned n, // how many samples to draw + MT19937* rng, + std::vector* hypos); +}; + +#endif -- cgit v1.2.3