From b56da6f08c4f59b562a102671ac3deb135b0538a Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Sun, 13 May 2012 16:18:43 -0700 Subject: fast creg training code for univariate linear and logistic regression --- BUILDING | 17 +- training/Makefile.am | 4 + training/creg.cc | 334 ++++++++++++++++++++++++++++++++++++++++ training/liblbfgs/lbfgs++.h | 29 ++-- training/liblbfgs/ll_test.cc | 4 +- utils/Makefile.am | 4 + utils/fast_sparse_vector.h | 16 +- utils/json_feature_map_lexer.h | 15 ++ utils/json_feature_map_lexer.ll | 132 ++++++++++++++++ 9 files changed, 527 insertions(+), 28 deletions(-) create mode 100644 training/creg.cc create mode 100644 utils/json_feature_map_lexer.h create mode 100644 utils/json_feature_map_lexer.ll diff --git a/BUILDING b/BUILDING index c7b954c7..d5a086e8 100644 --- a/BUILDING +++ b/BUILDING @@ -1,6 +1,5 @@ To build cdec, you'll need: - * Google c++ testing framework (http://code.google.com/p/googletest/) * boost headers & boost program_options (you may need to install a package like boost-devel) @@ -8,20 +7,14 @@ To build cdec, you'll need: Instructions for building ----------------------------------- - 1) Optional: Download and build SRILM - - 2) Download, build, and install Google Test (optional, this is necessary - to build unit tests that may be useful in development; system tests - work without it) - - 3) Use automake / autoconf to generate the configure script. + 1) Use automake / autoconf to generate the configure script. I'm not an expert at using these tools, but this should be sufficient: autoreconf -ifv - 4) Configure and build. Your command will look something like this. + 2) Configure and build. Your command will look something like this. - ./configure --disable-gtest + ./configure make If you get errors during configure about missing BOOST macros, then step 3 @@ -36,12 +29,12 @@ Instructions for building make LIBS+="-lz -lboost_program_options" \ CFLAGS+="-Wno-sign-compare" - 5) Test + 3) Test ./tests/run-system-tests.pl Everything should pass. - 6) Enjoy! + 4) Enjoy! diff --git a/training/Makefile.am b/training/Makefile.am index 991ac210..4b69ea94 100644 --- a/training/Makefile.am +++ b/training/Makefile.am @@ -1,5 +1,6 @@ bin_PROGRAMS = \ model1 \ + creg \ lbl_model \ test_ngram \ mr_em_map_adapter \ @@ -23,6 +24,9 @@ noinst_PROGRAMS = \ TESTS = lbfgs_test optimize_test +creg_SOURCES = creg.cc +creg_LDADD = ./liblbfgs/liblbfgs.a $(top_srcdir)/utils/libutils.a -lz + mpi_online_optimize_SOURCES = mpi_online_optimize.cc online_optimizer.cc mpi_online_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz diff --git a/training/creg.cc b/training/creg.cc new file mode 100644 index 00000000..58adea00 --- /dev/null +++ b/training/creg.cc @@ -0,0 +1,334 @@ +#include +#include +#include +#include + +#include +#include + +#include "json_feature_map_lexer.h" +#include "prob.h" +#include "filelib.h" +#include "weights.h" +#include "sparse_vector.h" +#include "liblbfgs/lbfgs++.h" + +using namespace std; +using namespace std::tr1; +namespace po = boost::program_options; + +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + opts.add_options() + ("training_features,x", po::value(), "File containing training instance features (ARKRegression format)") + ("training_responses,y", po::value(), "File containing training response features (ARKRegression format)") + ("linear,n", "Linear (rather than logistic) regression") + ("l1",po::value()->default_value(0.0), "l_1 regularization strength") + ("l2",po::value()->default_value(0.0), "l_2 regularization strength") + ("weights,w", po::value(), "Initial weights") + ("epsilon,e", po::value()->default_value(1e-4), "Epsilon for convergence test. Terminates when ||g|| < epsilon * max(1, ||x||)") + ("memory_buffers,m",po::value()->default_value(40), "Number of memory buffers for LBFGS") + ("help,h", "Help"); + po::options_description dcmdline_options; + dcmdline_options.add(opts); + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + if (conf->count("help") || !conf->count("training_features") || !conf->count("training_responses")) { + cerr << dcmdline_options << endl; + exit(1); + } +} + +struct TrainingInstance { + SparseVector x; + union { + unsigned label; // for categorical predictions + float value; // for continuous predictions + } y; +}; + +struct ReaderHelper { + explicit ReaderHelper(vector* xyp) : xy_pairs(xyp), lc(), flag() {} + unordered_map id2ind; + vector* xy_pairs; + int lc; + bool flag; +}; + +void ReaderCB(const string& id, const SparseVector& fmap, void* extra) { + ReaderHelper& rh = *reinterpret_cast(extra); + ++rh.lc; + if (rh.lc % 1000 == 0) { cerr << '.'; rh.flag = true; } + if (rh.lc % 40000 == 0) { cerr << " [" << rh.lc << "]\n"; rh.flag = false; } + const unordered_map::iterator it = rh.id2ind.find(id); + if (it == rh.id2ind.end()) { + cerr << "Unlabeled example in line " << rh.lc << endl; + abort(); + } + (*rh.xy_pairs)[it->second - 1].x = fmap; +} + +void ReadLabeledInstances(const string& ffeats, + const string& fresp, + const bool is_continuous, + vector* xy_pairs, + vector* labels) { + bool flag = false; + xy_pairs->clear(); + int lc = 0; + ReaderHelper rh(xy_pairs); + unordered_map label2id; + cerr << "Reading training responses from " << fresp << " ..." << endl; + ReadFile fr(fresp); + for (unsigned i = 0; i < labels->size(); ++i) + label2id[(*labels)[i]] = i; + istream& in = *fr.stream(); + string line; + while(getline(in, line)) { + ++lc; + if (lc % 1000 == 0) { cerr << '.'; flag = true; } + if (lc % 40000 == 0) { cerr << " [" << lc << "]\n"; flag = false; } + if (line.size() == 0) continue; + if (line[0] == '#') continue; + unsigned p = 0; + while (p < line.size() && line[p] != ' ' && line[p] != '\t') { ++p; } + unsigned& ind = rh.id2ind[line.substr(0, p)]; + if (ind != 0) { cerr << "ID " << line.substr(0, p) << " duplicated in line " << lc << endl; abort(); } + while (p < line.size() && (line[p] == ' ' || line[p] == '\t')) { ++p; } + assert(p < line.size()); + xy_pairs->push_back(TrainingInstance()); + ind = xy_pairs->size(); + if (is_continuous) { + xy_pairs->back().y.value = strtof(&line[p], 0); + } else { // categorical predictions + unordered_map::iterator it = label2id.find(line.substr(p)); + if (it == label2id.end()) { + const string label = line.substr(p); + it = label2id.insert(make_pair(label, labels->size())).first; + labels->push_back(label); + } + xy_pairs->back().y.label = it->second; // label id + } + } + if (flag) cerr << endl; + if (!is_continuous) { + cerr << "LABELS:"; + for (unsigned j = 0; j < labels->size(); ++j) + cerr << " " << (*labels)[j]; + cerr << endl; + } + cerr << "Reading training features from " << ffeats << " ..." << endl; + ReadFile ff(ffeats); + JSONFeatureMapLexer::ReadRules(ff.stream(), ReaderCB, &rh); + if (rh.flag) cerr << endl; +} + +// helper base class (not polymorphic- just a container and some helper functions) for loss functions +// real loss functions should implement double operator()(const vector& x, double* g), +// which should evaluate f(x) and g = f'(x) +struct BaseLoss { + // dimp1 = number of categorial outputs possible for logistic regression + // for linear regression, it should be 1 more than the dimension of the response variable + BaseLoss( + const vector& tr, + unsigned dimp1, + unsigned numfeats, + unsigned ll2) : training(tr), K(dimp1), p(numfeats), l2(ll2) {} + + // weight vector layout for K classes, with p features + // w[0 : K-1] = bias weights + // w[y*p + K : y*p + K + p - 1] = feature weights for y^th class + // this representation is used in ComputeDotProducts and GradAdd + void ComputeDotProducts(const SparseVector& fx, // feature vector of x + const vector& w, // full weight vector + vector* pdotprods) const { + vector& dotprods = *pdotprods; + const unsigned km1 = K - 1; + dotprods.resize(km1); + for (unsigned y = 0; y < km1; ++y) + dotprods[y] = w[y]; // bias terms + for (SparseVector::const_iterator it = fx.begin(); it != fx.end(); ++it) { + const float fval = it->second; + const unsigned fid = it->first; + for (unsigned y = 0; y < km1; ++y) + dotprods[y] += w[fid + y * p + km1] * fval; + } + } + + double ApplyRegularizationTerms(const vector& weights, + double* g) const { + double reg = 0; + for (size_t i = K - 1; i < weights.size(); ++i) { + const double& w_i = weights[i]; + reg += l2 * w_i * w_i; + g[i] += 2 * l2 * w_i; + } + return reg; + } + + void GradAdd(const SparseVector& fx, + const unsigned y, + const double scale, + double* acc) const { + acc[y] += scale; // class bias + for (SparseVector::const_iterator it = fx.begin(); + it != fx.end(); ++it) + acc[it->first + y * p + K - 1] += it->second * scale; + } + + const vector& training; + const unsigned K, p; + const double l2; +}; + +struct UnivariateSquaredLoss : public BaseLoss { + UnivariateSquaredLoss( + const vector& tr, + unsigned numfeats, + const double l2) : BaseLoss(tr, 2, numfeats, l2) {} + + // evaluate squared loss and gradient + double operator()(const vector& x, double* g) const { + fill(g, g + x.size(), 0.0); + double cll = 0; + vector dotprods(1); // univariate prediction + for (int i = 0; i < training.size(); ++i) { + const SparseVector& fmapx = training[i].x; + const double refy = training[i].y.value; + ComputeDotProducts(fmapx, x, &dotprods); + double diff = dotprods[0] - refy; + cll += diff * diff; + + double scale = 2 * diff; + GradAdd(fmapx, 0, scale, g); + } + double reg = ApplyRegularizationTerms(x, g); + return cll + reg; + } +}; + +struct MulticlassLogLoss : public BaseLoss { + MulticlassLogLoss( + const vector& tr, + unsigned k, + unsigned numfeats, + const double l2) : BaseLoss(tr, k, numfeats, l2) {} + + // evaluate log loss and gradient + double operator()(const vector& x, double* g) const { + fill(g, g + x.size(), 0.0); + vector dotprods(K - 1); // K-1 degrees of freedom + vector probs(K); + double cll = 0; + for (int i = 0; i < training.size(); ++i) { + const SparseVector& fmapx = training[i].x; + const unsigned refy = training[i].y.label; + //cerr << "FMAP: " << fmapx << endl; + ComputeDotProducts(fmapx, x, &dotprods); + prob_t z; + for (unsigned j = 0; j < dotprods.size(); ++j) + z += (probs[j] = prob_t(dotprods[j], init_lnx())); + z += (probs.back() = prob_t::One()); + for (unsigned y = 0; y < probs.size(); ++y) { + probs[y] /= z; + //cerr << " p(y=" << y << ")=" << probs[y].as_float() << "\tz=" << z << endl; + } + cll -= log(probs[refy]); // log p(y | x) + + for (unsigned y = 0; y < dotprods.size(); ++y) { + double scale = probs[y].as_float(); + if (y == refy) { scale -= 1.0; } + GradAdd(fmapx, y, scale, g); + } + } + double reg = ApplyRegularizationTerms(x, g); + return cll + reg; + } +}; + +template +double LearnParameters(LossFunction& loss, + const double l1, + const unsigned l1_start, + const unsigned memory_buffers, + const double eps, + vector* px) { + LBFGS lbfgs(px, loss, memory_buffers, l1, l1_start, eps); + lbfgs.MinimizeFunction(); + return 0; +} + +int main(int argc, char** argv) { + po::variables_map conf; + InitCommandLine(argc, argv, &conf); + string line; + vector training; + const string xfile = conf["training_features"].as(); + const string yfile = conf["training_responses"].as(); + double l1 = conf["l1"].as(); + double l2 = conf["l2"].as(); + const unsigned memory_buffers = conf["memory_buffers"].as(); + const double epsilon = conf["epsilon"].as(); + if (l1 < 0.0) { + cerr << "L1 strength must be >= 0\n"; + return 1; + } + if (l2 < 0.0) { + cerr << "L2 strength must be >= 0\n"; + return 2; + } + + const bool is_continuous = conf.count("linear"); + vector labels; // only populated for non-continuous models + ReadLabeledInstances(xfile, yfile, is_continuous, &training, &labels); + + if (conf.count("weights")) { + cerr << "Initial weights are not implemented, please implement." << endl; + // TODO read weights for categorical and continuous predictions + // can't use normal cdec weight framework + abort(); + } + + cerr << " Number of features: " << FD::NumFeats() << endl; + cerr << "Number of training examples: " << training.size() << endl; + const unsigned p = FD::NumFeats(); + cout.precision(15); + + if (conf.count("linear")) { // linear regression + vector weights(1 + FD::NumFeats(), 0.0); + cerr << " Number of parameters: " << weights.size() << endl; + UnivariateSquaredLoss loss(training, p, l2); + LearnParameters(loss, l1, 1, memory_buffers, epsilon, &weights); + cout << p << "\t***CONTINUOUS***" << endl; + cout << "***BIAS***\t" << weights[0] << endl; + for (unsigned f = 0; f < p; ++f) { + const double w = weights[1 + f]; + if (w) + cout << FD::Convert(f) << "\t" << w << endl; + } + } else { // logistic regression + vector weights((1 + FD::NumFeats()) * (labels.size() - 1), 0.0); + cerr << " Number of parameters: " << weights.size() << endl; + cerr << " Number of labels: " << labels.size() << endl; + const unsigned K = labels.size(); + const unsigned km1 = K - 1; + MulticlassLogLoss loss(training, K, p, l2); + LearnParameters(loss, l1, km1, memory_buffers, epsilon, &weights); + + cout << p << "\t***CATEGORICAL***"; + for (unsigned y = 0; y < K; ++y) + cout << '\t' << labels[y]; + cout << endl; + for (unsigned y = 0; y < km1; ++y) + cout << labels[y] << "\t***BIAS***\t" << weights[y] << endl; + for (unsigned y = 0; y < km1; ++y) { + for (unsigned f = 0; f < p; ++f) { + const double w = weights[km1 + y * p + f]; + if (w) + cout << labels[y] << "\t" << FD::Convert(f) << "\t" << w << endl; + } + } + } + + return 0; +} + diff --git a/training/liblbfgs/lbfgs++.h b/training/liblbfgs/lbfgs++.h index 342f9b0e..92ead955 100644 --- a/training/liblbfgs/lbfgs++.h +++ b/training/liblbfgs/lbfgs++.h @@ -16,28 +16,33 @@ template class LBFGS { public: - LBFGS(size_t n, // number of variables - const Function& f, // function to optimize - double l1_c = 0.0, // l1 penalty strength - size_t m = 10 // number of memory buffers - // TODO should use custom allocator here: + LBFGS(size_t n, // number of variables + const Function& f, // function to optimize + size_t m = 10, // number of memory buffers + double l1_c = 0.0, // l1 penalty strength + unsigned l1_start = 0, // l1 penalty starting index + double eps = 1e-5 // convergence epsilon + // TODO should use custom allocator here: ) : p_x(new std::vector(n, 0.0)), owned(true), m_x(*p_x), func(f) { - Init(m, l1_c); + Init(m, l1_c, l1_start, eps); } // constructor where external vector storage for variables is used LBFGS(std::vector* px, const Function& f, - double l1_c = 0.0, // l1 penalty strength - size_t m = 10 + size_t m = 10, // number of memory buffers + double l1_c = 0.0, // l1 penalty strength + unsigned l1_start = 0, // l1 penalty starting index + double eps = 1e-5 // convergence epsilon + // TODO should use custom allocator here: ) : p_x(px), owned(false), m_x(*p_x), func(f) { - Init(m, l1_c); + Init(m, l1_c, l1_start, eps); } ~LBFGS() { @@ -60,12 +65,14 @@ class LBFGS { } private: - void Init(size_t m, double l1_c) { + void Init(size_t m, double l1_c, unsigned l1_start, double eps) { lbfgs_parameter_init(¶m); param.m = m; + param.epsilon = eps; if (l1_c > 0.0) { param.linesearch = LBFGS_LINESEARCH_BACKTRACKING; - param.orthantwise_c = 1.0; + param.orthantwise_c = l1_c; + param.orthantwise_start = l1_start; } silence = false; } diff --git a/training/liblbfgs/ll_test.cc b/training/liblbfgs/ll_test.cc index 43c0f214..48bc0366 100644 --- a/training/liblbfgs/ll_test.cc +++ b/training/liblbfgs/ll_test.cc @@ -5,7 +5,7 @@ using namespace std; // Function must be lbfgsfloatval_t f(x.begin, x.end, g.begin) lbfgsfloatval_t func(const vector& x, lbfgsfloatval_t* g) { - int i; + unsigned i; lbfgsfloatval_t fx = 0.0; for (i = 0;i < x.size();i += 2) { @@ -24,7 +24,7 @@ void Opt(F& f) { lbfgs.MinimizeFunction(); } -int main(int argc, char** argv) { +int main() { Opt(func); return 0; } diff --git a/utils/Makefile.am b/utils/Makefile.am index 46650c75..b7da0f06 100644 --- a/utils/Makefile.am +++ b/utils/Makefile.am @@ -33,12 +33,16 @@ libutils_a_SOURCES = \ sparse_vector.cc \ timing_stats.cc \ verbose.cc \ + json_feature_map_lexer.cc \ weights.cc if HAVE_CMPH libutils_a_SOURCES += perfect_hash.cc endif +json_feature_map_lexer.cc: json_feature_map_lexer.ll + $(LEX) -s -8 -CF -o$@ $< + phmt_SOURCES = phmt.cc ts_SOURCES = ts.cc m_test_SOURCES = m_test.cc diff --git a/utils/fast_sparse_vector.h b/utils/fast_sparse_vector.h index af832950..68caa704 100644 --- a/utils/fast_sparse_vector.h +++ b/utils/fast_sparse_vector.h @@ -7,8 +7,6 @@ // important: indexes are integers // important: iterators may return elements in any order -#include "config.h" - #include #include #include @@ -16,8 +14,9 @@ #include #include -#include +#include "config.h" +#include #if HAVE_BOOST_ARCHIVE_TEXT_OARCHIVE_HPP #include #endif @@ -119,6 +118,17 @@ class FastSparseVector { std::memcpy(this, &other, sizeof(FastSparseVector)); if (is_remote_) data_.rbmap = new std::map(*data_.rbmap); } + FastSparseVector(std::pair* first, std::pair* last) { + const ptrdiff_t n = last - first; + if (n <= LOCAL_MAX) { + is_remote_ = false; + local_size_ = n; + std::memcpy(data_.local, first, sizeof(std::pair) * n); + } else { + is_remote_ = true; + data_.rbmap = new std::map(first, last); + } + } void erase(int k) { if (is_remote_) { data_.rbmap->erase(k); diff --git a/utils/json_feature_map_lexer.h b/utils/json_feature_map_lexer.h new file mode 100644 index 00000000..3324aa29 --- /dev/null +++ b/utils/json_feature_map_lexer.h @@ -0,0 +1,15 @@ +#ifndef _RULE_LEXER_H_ +#define _RULE_LEXER_H_ + +#include +#include + +#include "sparse_vector.h" + +struct JSONFeatureMapLexer { + typedef void (*FeatureMapCallback)(const std::string& id, const SparseVector& fmap, void* extra); + static void ReadRules(std::istream* in, FeatureMapCallback func, void* extra); +}; + +#endif + diff --git a/utils/json_feature_map_lexer.ll b/utils/json_feature_map_lexer.ll new file mode 100644 index 00000000..372b52f5 --- /dev/null +++ b/utils/json_feature_map_lexer.ll @@ -0,0 +1,132 @@ +%option nounput +%{ + +#include "json_feature_map_lexer.h" +#include "fdict.h" +#include "fast_sparse_vector.h" + +#define YY_DECL int json_fmap_yylex (void) +#undef YY_INPUT +#define YY_INPUT(buf, result, max_size) (result = jfmap_stream->read(buf, max_size).gcount()) +#define YY_SKIP_YYWRAP 1 +int yywrap() { return 1; } + +JSONFeatureMapLexer::FeatureMapCallback json_fmap_callback = NULL; +void* json_fmap_callback_extra = NULL; +std::istream* jfmap_stream = NULL; +bool fl = true; +unsigned spos = 0; +char featname[16000]; +#define MAX_FEATS 20000 +std::pair featmap[MAX_FEATS]; +unsigned curfeat = 0; +std::string instid; + +inline unsigned unicode_escape_to_utf8(uint16_t w1, uint16_t w2, char* putf8) { + uint32_t cp; + if((w1 & 0xfc00) == 0xd800) { + if((w2 & 0xfc00) == 0xdc00) { + cp = 0x10000 + (((static_cast(w1) & 0x3ff) << 10) | (w2 & 0x3ff)); + } else { + abort(); + } + } else { + cp = w1; + } + + + if(cp < 0x80) { + putf8[0] = static_cast(cp); + return 1; + } else if(cp < 0x0800) { + putf8[0] = 0xc0 | ((cp >> 6) & 0x1f); + putf8[1] = 0x80 | (cp & 0x3f); + return 2; + } else if(cp < 0x10000) { + putf8[0] = 0xe0 | ((cp >> 6) & 0x0f); + putf8[1] = 0x80 | ((cp >> 6) & 0x3f); + putf8[2] = 0x80 | (cp & 0x3f); + return 3; + } else if(cp < 0x1fffff) { + putf8[0] = 0xf0 | ((cp >> 18) & 0x07); + putf8[1] = 0x80 | ((cp >> 12) & 0x3f); + putf8[2] = 0x80 | ((cp >> 6) & 0x3f); + putf8[3] = 0x80 | (cp & 0x3f); + return 4; + } else { + abort(); + } + return 0; +} + +%} + +ID [A-Za-z_0-9]+ +HEX_D [a-fA-F0-9] +INT [-]?[0-9]+ +DOUBLE {INT}((\.[0-9]+)?([eE][-+]?[0-9]+)?) +WS [ \t\r\n] +LCB [{] +RCB [}] +UNESCAPED_CH [^\"\\\b\n\r\f\t] + +%x JSON PREVAL STRING JSONVAL POSTVAL DOUBLE +%% + +{ID} { instid = yytext; BEGIN(JSON); } + +{WS}*{LCB}{WS}* { BEGIN(PREVAL); } + +\" { BEGIN(STRING); spos=0; } + +\" { featname[spos] = 0; + featmap[curfeat].first = FD::Convert(featname); + BEGIN(JSONVAL); + } +{UNESCAPED_CH} { featname[spos++] = yytext[0]; } +\\\" { featname[spos++] = '"'; } +\\\\ { featname[spos++] = '\\'; } +\\\/ { featname[spos++] = '/'; } +\\b { } +\\f { } +\\n { } +\\r { } +\\t { } +\\u{HEX_D}{HEX_D}{HEX_D}{HEX_D} { abort(); + } + +{WS}*:{WS}* { BEGIN(DOUBLE); } +{DOUBLE} { featmap[curfeat++].second = strtod(yytext, 0); + BEGIN(POSTVAL); } + +{WS}*,{WS}* { BEGIN(PREVAL); } +{WS}*{RCB}\n* { + const SparseVector x(&featmap[0], &featmap[curfeat]); + json_fmap_callback(instid, x, json_fmap_callback_extra); + curfeat = 0; + BEGIN(INITIAL); + } + +. { std::cerr << "bad input: " << yytext << std::endl; abort(); } + +%% + +void JSONFeatureMapLexer::ReadRules(std::istream* in, FeatureMapCallback func, void* extra) { + json_fmap_callback = func; + json_fmap_callback_extra = extra; + jfmap_stream = in; + json_fmap_yylex(); +} + +#if 0 +void cb(const std::string& id, const SparseVector& fmap, void* extra) { + (void) extra; + static int cc = 0; + cc++; +} + +int main() { + JSONFeatureMapLexer::ReadRules(&std::cin, cb, NULL); +} +#endif + -- cgit v1.2.3 From 7001792f10cb17d88ed2d4c58364b6304bbd0816 Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Sun, 13 May 2012 17:09:34 -0700 Subject: put creg in its own top-level folder --- creg/Makefile.am | 11 ++ creg/README | 7 + creg/creg.cc | 334 ++++++++++++++++++++++++++++++++++++++++ creg/json_feature_map_lexer.h | 15 ++ creg/json_feature_map_lexer.ll | 132 ++++++++++++++++ creg/test_data/iris.testfeat | 50 ++++++ creg/test_data/iris.testresp | 50 ++++++ creg/test_data/iris.trainfeat | 100 ++++++++++++ creg/test_data/iris.trainresp | 100 ++++++++++++ training/Makefile.am | 4 - training/creg.cc | 334 ---------------------------------------- training/liblbfgs/lbfgs++.h | 1 + utils/Makefile.am | 4 - utils/json_feature_map_lexer.h | 15 -- utils/json_feature_map_lexer.ll | 132 ---------------- 15 files changed, 800 insertions(+), 489 deletions(-) create mode 100644 creg/Makefile.am create mode 100644 creg/README create mode 100644 creg/creg.cc create mode 100644 creg/json_feature_map_lexer.h create mode 100644 creg/json_feature_map_lexer.ll create mode 100644 creg/test_data/iris.testfeat create mode 100644 creg/test_data/iris.testresp create mode 100644 creg/test_data/iris.trainfeat create mode 100644 creg/test_data/iris.trainresp delete mode 100644 training/creg.cc delete mode 100644 utils/json_feature_map_lexer.h delete mode 100644 utils/json_feature_map_lexer.ll diff --git a/creg/Makefile.am b/creg/Makefile.am new file mode 100644 index 00000000..9e25b838 --- /dev/null +++ b/creg/Makefile.am @@ -0,0 +1,11 @@ +bin_PROGRAMS = \ + creg + +creg_SOURCES = creg.cc json_feature_map_lexer.cc +creg_LDADD = $(top_srcdir)/training/liblbfgs/liblbfgs.a $(top_srcdir)/utils/libutils.a -lz + +json_feature_map_lexer.cc: json_feature_map_lexer.ll + $(LEX) -s -8 -CF -o$@ $< + +AM_CPPFLAGS = -W -Wall -DNDEBUG -I$(top_srcdir)/utils -I$(top_srcdir)/training + diff --git a/creg/README b/creg/README new file mode 100644 index 00000000..2c04c83b --- /dev/null +++ b/creg/README @@ -0,0 +1,7 @@ +creg is a fast tool for training linear and logistic regression models with +l_1 and l_2 regularization. Its data (feature and response) format is compatible +with ARKRegression. + +Example invokation: +$ ./creg -x test_data/iris.trainfeat -y test_data/iris.trainresp --l2 100 + diff --git a/creg/creg.cc b/creg/creg.cc new file mode 100644 index 00000000..43f01bc4 --- /dev/null +++ b/creg/creg.cc @@ -0,0 +1,334 @@ +#include +#include +#include +#include + +#include +#include + +#include "json_feature_map_lexer.h" +#include "prob.h" +#include "filelib.h" +#include "weights.h" +#include "sparse_vector.h" +#include "liblbfgs/lbfgs++.h" + +using namespace std; +using namespace std::tr1; +namespace po = boost::program_options; + +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + opts.add_options() + ("training_features,x", po::value(), "File containing training instance features (ARKRegression format)") + ("training_responses,y", po::value(), "File containing training response features (ARKRegression format)") + ("linear,n", "Linear (rather than logistic) regression") + ("l1",po::value()->default_value(0.0), "l_1 regularization strength") + ("l2",po::value()->default_value(0.0), "l_2 regularization strength") + ("weights,w", po::value(), "Initial weights") + ("epsilon,e", po::value()->default_value(1e-4), "Epsilon for convergence test. Terminates when ||g|| < epsilon * max(1, ||w||)") + ("memory_buffers,m",po::value()->default_value(40), "Number of memory buffers for LBFGS") + ("help,h", "Help"); + po::options_description dcmdline_options; + dcmdline_options.add(opts); + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + if (conf->count("help") || !conf->count("training_features") || !conf->count("training_responses")) { + cerr << dcmdline_options << endl; + exit(1); + } +} + +struct TrainingInstance { + SparseVector x; + union { + unsigned label; // for categorical predictions + float value; // for continuous predictions + } y; +}; + +struct ReaderHelper { + explicit ReaderHelper(vector* xyp) : xy_pairs(xyp), lc(), flag() {} + unordered_map id2ind; + vector* xy_pairs; + int lc; + bool flag; +}; + +void ReaderCB(const string& id, const SparseVector& fmap, void* extra) { + ReaderHelper& rh = *reinterpret_cast(extra); + ++rh.lc; + if (rh.lc % 1000 == 0) { cerr << '.'; rh.flag = true; } + if (rh.lc % 40000 == 0) { cerr << " [" << rh.lc << "]\n"; rh.flag = false; } + const unordered_map::iterator it = rh.id2ind.find(id); + if (it == rh.id2ind.end()) { + cerr << "Unlabeled example in line " << rh.lc << endl; + abort(); + } + (*rh.xy_pairs)[it->second - 1].x = fmap; +} + +void ReadLabeledInstances(const string& ffeats, + const string& fresp, + const bool is_continuous, + vector* xy_pairs, + vector* labels) { + bool flag = false; + xy_pairs->clear(); + int lc = 0; + ReaderHelper rh(xy_pairs); + unordered_map label2id; + cerr << "Reading training responses from " << fresp << " ..." << endl; + ReadFile fr(fresp); + for (unsigned i = 0; i < labels->size(); ++i) + label2id[(*labels)[i]] = i; + istream& in = *fr.stream(); + string line; + while(getline(in, line)) { + ++lc; + if (lc % 1000 == 0) { cerr << '.'; flag = true; } + if (lc % 40000 == 0) { cerr << " [" << lc << "]\n"; flag = false; } + if (line.size() == 0) continue; + if (line[0] == '#') continue; + unsigned p = 0; + while (p < line.size() && line[p] != ' ' && line[p] != '\t') { ++p; } + unsigned& ind = rh.id2ind[line.substr(0, p)]; + if (ind != 0) { cerr << "ID " << line.substr(0, p) << " duplicated in line " << lc << endl; abort(); } + while (p < line.size() && (line[p] == ' ' || line[p] == '\t')) { ++p; } + assert(p < line.size()); + xy_pairs->push_back(TrainingInstance()); + ind = xy_pairs->size(); + if (is_continuous) { + xy_pairs->back().y.value = strtof(&line[p], 0); + } else { // categorical predictions + unordered_map::iterator it = label2id.find(line.substr(p)); + if (it == label2id.end()) { + const string label = line.substr(p); + it = label2id.insert(make_pair(label, labels->size())).first; + labels->push_back(label); + } + xy_pairs->back().y.label = it->second; // label id + } + } + if (flag) cerr << endl; + if (!is_continuous) { + cerr << "LABELS:"; + for (unsigned j = 0; j < labels->size(); ++j) + cerr << " " << (*labels)[j]; + cerr << endl; + } + cerr << "Reading training features from " << ffeats << " ..." << endl; + ReadFile ff(ffeats); + JSONFeatureMapLexer::ReadRules(ff.stream(), ReaderCB, &rh); + if (rh.flag) cerr << endl; +} + +// helper base class (not polymorphic- just a container and some helper functions) for loss functions +// real loss functions should implement double operator()(const vector& x, double* g), +// which should evaluate f(x) and g = f'(x) +struct BaseLoss { + // dimp1 = number of categorial outputs possible for logistic regression + // for linear regression, it should be 1 more than the dimension of the response variable + BaseLoss( + const vector& tr, + unsigned dimp1, + unsigned numfeats, + unsigned ll2) : training(tr), K(dimp1), p(numfeats), l2(ll2) {} + + // weight vector layout for K classes, with p features + // w[0 : K-1] = bias weights + // w[y*p + K : y*p + K + p - 1] = feature weights for y^th class + // this representation is used in ComputeDotProducts and GradAdd + void ComputeDotProducts(const SparseVector& fx, // feature vector of x + const vector& w, // full weight vector + vector* pdotprods) const { + vector& dotprods = *pdotprods; + const unsigned km1 = K - 1; + dotprods.resize(km1); + for (unsigned y = 0; y < km1; ++y) + dotprods[y] = w[y]; // bias terms + for (SparseVector::const_iterator it = fx.begin(); it != fx.end(); ++it) { + const float fval = it->second; + const unsigned fid = it->first; + for (unsigned y = 0; y < km1; ++y) + dotprods[y] += w[fid + y * p + km1] * fval; + } + } + + double ApplyRegularizationTerms(const vector& weights, + double* g) const { + double reg = 0; + for (size_t i = K - 1; i < weights.size(); ++i) { + const double& w_i = weights[i]; + reg += l2 * w_i * w_i; + g[i] += 2 * l2 * w_i; + } + return reg; + } + + void GradAdd(const SparseVector& fx, + const unsigned y, + const double scale, + double* acc) const { + acc[y] += scale; // class bias + for (SparseVector::const_iterator it = fx.begin(); + it != fx.end(); ++it) + acc[it->first + y * p + K - 1] += it->second * scale; + } + + const vector& training; + const unsigned K, p; + const double l2; +}; + +struct UnivariateSquaredLoss : public BaseLoss { + UnivariateSquaredLoss( + const vector& tr, + unsigned numfeats, + const double l2) : BaseLoss(tr, 2, numfeats, l2) {} + + // evaluate squared loss and gradient + double operator()(const vector& x, double* g) const { + fill(g, g + x.size(), 0.0); + double cll = 0; + vector dotprods(1); // univariate prediction + for (unsigned i = 0; i < training.size(); ++i) { + const SparseVector& fmapx = training[i].x; + const double refy = training[i].y.value; + ComputeDotProducts(fmapx, x, &dotprods); + double diff = dotprods[0] - refy; + cll += diff * diff; + + double scale = 2 * diff; + GradAdd(fmapx, 0, scale, g); + } + double reg = ApplyRegularizationTerms(x, g); + return cll + reg; + } +}; + +struct MulticlassLogLoss : public BaseLoss { + MulticlassLogLoss( + const vector& tr, + unsigned k, + unsigned numfeats, + const double l2) : BaseLoss(tr, k, numfeats, l2) {} + + // evaluate log loss and gradient + double operator()(const vector& x, double* g) const { + fill(g, g + x.size(), 0.0); + vector dotprods(K - 1); // K-1 degrees of freedom + vector probs(K); + double cll = 0; + for (unsigned i = 0; i < training.size(); ++i) { + const SparseVector& fmapx = training[i].x; + const unsigned refy = training[i].y.label; + //cerr << "FMAP: " << fmapx << endl; + ComputeDotProducts(fmapx, x, &dotprods); + prob_t z; + for (unsigned j = 0; j < dotprods.size(); ++j) + z += (probs[j] = prob_t(dotprods[j], init_lnx())); + z += (probs.back() = prob_t::One()); + for (unsigned y = 0; y < probs.size(); ++y) { + probs[y] /= z; + //cerr << " p(y=" << y << ")=" << probs[y].as_float() << "\tz=" << z << endl; + } + cll -= log(probs[refy]); // log p(y | x) + + for (unsigned y = 0; y < dotprods.size(); ++y) { + double scale = probs[y].as_float(); + if (y == refy) { scale -= 1.0; } + GradAdd(fmapx, y, scale, g); + } + } + double reg = ApplyRegularizationTerms(x, g); + return cll + reg; + } +}; + +template +double LearnParameters(LossFunction& loss, + const double l1, + const unsigned l1_start, + const unsigned memory_buffers, + const double eps, + vector* px) { + LBFGS lbfgs(px, loss, memory_buffers, l1, l1_start, eps); + lbfgs.MinimizeFunction(); + return 0; +} + +int main(int argc, char** argv) { + po::variables_map conf; + InitCommandLine(argc, argv, &conf); + string line; + vector training; + const string xfile = conf["training_features"].as(); + const string yfile = conf["training_responses"].as(); + double l1 = conf["l1"].as(); + double l2 = conf["l2"].as(); + const unsigned memory_buffers = conf["memory_buffers"].as(); + const double epsilon = conf["epsilon"].as(); + if (l1 < 0.0) { + cerr << "L1 strength must be >= 0\n"; + return 1; + } + if (l2 < 0.0) { + cerr << "L2 strength must be >= 0\n"; + return 2; + } + + const bool is_continuous = conf.count("linear"); + vector labels; // only populated for non-continuous models + ReadLabeledInstances(xfile, yfile, is_continuous, &training, &labels); + + if (conf.count("weights")) { + cerr << "Initial weights are not implemented, please implement." << endl; + // TODO read weights for categorical and continuous predictions + // can't use normal cdec weight framework + abort(); + } + + cerr << " Number of features: " << FD::NumFeats() << endl; + cerr << "Number of training examples: " << training.size() << endl; + const unsigned p = FD::NumFeats(); + cout.precision(15); + + if (conf.count("linear")) { // linear regression + vector weights(1 + FD::NumFeats(), 0.0); + cerr << " Number of parameters: " << weights.size() << endl; + UnivariateSquaredLoss loss(training, p, l2); + LearnParameters(loss, l1, 1, memory_buffers, epsilon, &weights); + cout << p << "\t***CONTINUOUS***" << endl; + cout << "***BIAS***\t" << weights[0] << endl; + for (unsigned f = 0; f < p; ++f) { + const double w = weights[1 + f]; + if (w) + cout << FD::Convert(f) << "\t" << w << endl; + } + } else { // logistic regression + vector weights((1 + FD::NumFeats()) * (labels.size() - 1), 0.0); + cerr << " Number of parameters: " << weights.size() << endl; + cerr << " Number of labels: " << labels.size() << endl; + const unsigned K = labels.size(); + const unsigned km1 = K - 1; + MulticlassLogLoss loss(training, K, p, l2); + LearnParameters(loss, l1, km1, memory_buffers, epsilon, &weights); + + cout << p << "\t***CATEGORICAL***"; + for (unsigned y = 0; y < K; ++y) + cout << '\t' << labels[y]; + cout << endl; + for (unsigned y = 0; y < km1; ++y) + cout << labels[y] << "\t***BIAS***\t" << weights[y] << endl; + for (unsigned y = 0; y < km1; ++y) { + for (unsigned f = 0; f < p; ++f) { + const double w = weights[km1 + y * p + f]; + if (w) + cout << labels[y] << "\t" << FD::Convert(f) << "\t" << w << endl; + } + } + } + + return 0; +} + diff --git a/creg/json_feature_map_lexer.h b/creg/json_feature_map_lexer.h new file mode 100644 index 00000000..3324aa29 --- /dev/null +++ b/creg/json_feature_map_lexer.h @@ -0,0 +1,15 @@ +#ifndef _RULE_LEXER_H_ +#define _RULE_LEXER_H_ + +#include +#include + +#include "sparse_vector.h" + +struct JSONFeatureMapLexer { + typedef void (*FeatureMapCallback)(const std::string& id, const SparseVector& fmap, void* extra); + static void ReadRules(std::istream* in, FeatureMapCallback func, void* extra); +}; + +#endif + diff --git a/creg/json_feature_map_lexer.ll b/creg/json_feature_map_lexer.ll new file mode 100644 index 00000000..372b52f5 --- /dev/null +++ b/creg/json_feature_map_lexer.ll @@ -0,0 +1,132 @@ +%option nounput +%{ + +#include "json_feature_map_lexer.h" +#include "fdict.h" +#include "fast_sparse_vector.h" + +#define YY_DECL int json_fmap_yylex (void) +#undef YY_INPUT +#define YY_INPUT(buf, result, max_size) (result = jfmap_stream->read(buf, max_size).gcount()) +#define YY_SKIP_YYWRAP 1 +int yywrap() { return 1; } + +JSONFeatureMapLexer::FeatureMapCallback json_fmap_callback = NULL; +void* json_fmap_callback_extra = NULL; +std::istream* jfmap_stream = NULL; +bool fl = true; +unsigned spos = 0; +char featname[16000]; +#define MAX_FEATS 20000 +std::pair featmap[MAX_FEATS]; +unsigned curfeat = 0; +std::string instid; + +inline unsigned unicode_escape_to_utf8(uint16_t w1, uint16_t w2, char* putf8) { + uint32_t cp; + if((w1 & 0xfc00) == 0xd800) { + if((w2 & 0xfc00) == 0xdc00) { + cp = 0x10000 + (((static_cast(w1) & 0x3ff) << 10) | (w2 & 0x3ff)); + } else { + abort(); + } + } else { + cp = w1; + } + + + if(cp < 0x80) { + putf8[0] = static_cast(cp); + return 1; + } else if(cp < 0x0800) { + putf8[0] = 0xc0 | ((cp >> 6) & 0x1f); + putf8[1] = 0x80 | (cp & 0x3f); + return 2; + } else if(cp < 0x10000) { + putf8[0] = 0xe0 | ((cp >> 6) & 0x0f); + putf8[1] = 0x80 | ((cp >> 6) & 0x3f); + putf8[2] = 0x80 | (cp & 0x3f); + return 3; + } else if(cp < 0x1fffff) { + putf8[0] = 0xf0 | ((cp >> 18) & 0x07); + putf8[1] = 0x80 | ((cp >> 12) & 0x3f); + putf8[2] = 0x80 | ((cp >> 6) & 0x3f); + putf8[3] = 0x80 | (cp & 0x3f); + return 4; + } else { + abort(); + } + return 0; +} + +%} + +ID [A-Za-z_0-9]+ +HEX_D [a-fA-F0-9] +INT [-]?[0-9]+ +DOUBLE {INT}((\.[0-9]+)?([eE][-+]?[0-9]+)?) +WS [ \t\r\n] +LCB [{] +RCB [}] +UNESCAPED_CH [^\"\\\b\n\r\f\t] + +%x JSON PREVAL STRING JSONVAL POSTVAL DOUBLE +%% + +{ID} { instid = yytext; BEGIN(JSON); } + +{WS}*{LCB}{WS}* { BEGIN(PREVAL); } + +\" { BEGIN(STRING); spos=0; } + +\" { featname[spos] = 0; + featmap[curfeat].first = FD::Convert(featname); + BEGIN(JSONVAL); + } +{UNESCAPED_CH} { featname[spos++] = yytext[0]; } +\\\" { featname[spos++] = '"'; } +\\\\ { featname[spos++] = '\\'; } +\\\/ { featname[spos++] = '/'; } +\\b { } +\\f { } +\\n { } +\\r { } +\\t { } +\\u{HEX_D}{HEX_D}{HEX_D}{HEX_D} { abort(); + } + +{WS}*:{WS}* { BEGIN(DOUBLE); } +{DOUBLE} { featmap[curfeat++].second = strtod(yytext, 0); + BEGIN(POSTVAL); } + +{WS}*,{WS}* { BEGIN(PREVAL); } +{WS}*{RCB}\n* { + const SparseVector x(&featmap[0], &featmap[curfeat]); + json_fmap_callback(instid, x, json_fmap_callback_extra); + curfeat = 0; + BEGIN(INITIAL); + } + +. { std::cerr << "bad input: " << yytext << std::endl; abort(); } + +%% + +void JSONFeatureMapLexer::ReadRules(std::istream* in, FeatureMapCallback func, void* extra) { + json_fmap_callback = func; + json_fmap_callback_extra = extra; + jfmap_stream = in; + json_fmap_yylex(); +} + +#if 0 +void cb(const std::string& id, const SparseVector& fmap, void* extra) { + (void) extra; + static int cc = 0; + cc++; +} + +int main() { + JSONFeatureMapLexer::ReadRules(&std::cin, cb, NULL); +} +#endif + diff --git a/creg/test_data/iris.testfeat b/creg/test_data/iris.testfeat new file mode 100644 index 00000000..f7528f81 --- /dev/null +++ b/creg/test_data/iris.testfeat @@ -0,0 +1,50 @@ +100 {"sepal-length": 4.9, "sepal-width": 2.5, "petal-length": 4.5, "petal-width": 1.7} +101 {"sepal-length": 6.5, "sepal-width": 3.0, "petal-length": 5.2, "petal-width": 2.0} +102 {"sepal-length": 4.4, "sepal-width": 3.0, "petal-length": 1.3, "petal-width": 0.2} +103 {"sepal-length": 5.0, "sepal-width": 3.4, "petal-length": 1.5, "petal-width": 0.2} +104 {"sepal-length": 5.0, "sepal-width": 3.0, "petal-length": 1.6, "petal-width": 0.2} +105 {"sepal-length": 5.1, "sepal-width": 3.4, "petal-length": 1.5, "petal-width": 0.2} +106 {"sepal-length": 5.5, "sepal-width": 2.3, "petal-length": 4.0, "petal-width": 1.3} +107 {"sepal-length": 5.5, "sepal-width": 2.6, "petal-length": 4.4, "petal-width": 1.2} +108 {"sepal-length": 5.4, "sepal-width": 3.4, "petal-length": 1.7, "petal-width": 0.2} +109 {"sepal-length": 5.5, "sepal-width": 2.4, "petal-length": 3.7, "petal-width": 1.0} +110 {"sepal-length": 6.7, "sepal-width": 3.0, "petal-length": 5.0, "petal-width": 1.7} +111 {"sepal-length": 6.4, "sepal-width": 2.8, "petal-length": 5.6, "petal-width": 2.2} +112 {"sepal-length": 5.5, "sepal-width": 4.2, "petal-length": 1.4, "petal-width": 0.2} +113 {"sepal-length": 5.9, "sepal-width": 3.0, "petal-length": 4.2, "petal-width": 1.5} +114 {"sepal-length": 4.9, "sepal-width": 3.1, "petal-length": 1.5, "petal-width": 0.1} +115 {"sepal-length": 7.7, "sepal-width": 2.6, "petal-length": 6.9, "petal-width": 2.3} +116 {"sepal-length": 5.0, "sepal-width": 3.6, "petal-length": 1.4, "petal-width": 0.2} +117 {"sepal-length": 6.3, "sepal-width": 2.3, "petal-length": 4.4, "petal-width": 1.3} +118 {"sepal-length": 6.7, "sepal-width": 3.3, "petal-length": 5.7, "petal-width": 2.1} +119 {"sepal-length": 5.8, "sepal-width": 2.7, "petal-length": 5.1, "petal-width": 1.9} +120 {"sepal-length": 5.2, "sepal-width": 2.7, "petal-length": 3.9, "petal-width": 1.4} +121 {"sepal-length": 5.0, "sepal-width": 3.5, "petal-length": 1.6, "petal-width": 0.6} +122 {"sepal-length": 5.0, "sepal-width": 3.2, "petal-length": 1.2, "petal-width": 0.2} +123 {"sepal-length": 6.7, "sepal-width": 3.0, "petal-length": 5.2, "petal-width": 2.3} +124 {"sepal-length": 5.5, "sepal-width": 2.5, "petal-length": 4.0, "petal-width": 1.3} +125 {"sepal-length": 5.6, "sepal-width": 3.0, "petal-length": 4.5, "petal-width": 1.5} +126 {"sepal-length": 6.6, "sepal-width": 3.0, "petal-length": 4.4, "petal-width": 1.4} +127 {"sepal-length": 5.1, "sepal-width": 3.8, "petal-length": 1.6, "petal-width": 0.2} +128 {"sepal-length": 5.9, "sepal-width": 3.0, "petal-length": 5.1, "petal-width": 1.8} +129 {"sepal-length": 6.2, "sepal-width": 3.4, "petal-length": 5.4, "petal-width": 2.3} +130 {"sepal-length": 5.6, "sepal-width": 2.8, "petal-length": 4.9, "petal-width": 2.0} +131 {"sepal-length": 5.7, "sepal-width": 2.9, "petal-length": 4.2, "petal-width": 1.3} +132 {"sepal-length": 6.2, "sepal-width": 2.9, "petal-length": 4.3, "petal-width": 1.3} +133 {"sepal-length": 6.0, "sepal-width": 3.4, "petal-length": 4.5, "petal-width": 1.6} +134 {"sepal-length": 5.4, "sepal-width": 3.9, "petal-length": 1.7, "petal-width": 0.4} +135 {"sepal-length": 6.3, "sepal-width": 3.3, "petal-length": 6.0, "petal-width": 2.5} +136 {"sepal-length": 6.5, "sepal-width": 3.2, "petal-length": 5.1, "petal-width": 2.0} +137 {"sepal-length": 5.1, "sepal-width": 2.5, "petal-length": 3.0, "petal-width": 1.1} +138 {"sepal-length": 4.3, "sepal-width": 3.0, "petal-length": 1.1, "petal-width": 0.1} +139 {"sepal-length": 5.7, "sepal-width": 2.5, "petal-length": 5.0, "petal-width": 2.0} +140 {"sepal-length": 6.0, "sepal-width": 2.2, "petal-length": 5.0, "petal-width": 1.5} +141 {"sepal-length": 6.4, "sepal-width": 3.2, "petal-length": 5.3, "petal-width": 2.3} +142 {"sepal-length": 6.5, "sepal-width": 2.8, "petal-length": 4.6, "petal-width": 1.5} +143 {"sepal-length": 5.5, "sepal-width": 3.5, "petal-length": 1.3, "petal-width": 0.2} +144 {"sepal-length": 4.7, "sepal-width": 3.2, "petal-length": 1.3, "petal-width": 0.2} +145 {"sepal-length": 4.6, "sepal-width": 3.4, "petal-length": 1.4, "petal-width": 0.3} +146 {"sepal-length": 5.7, "sepal-width": 2.6, "petal-length": 3.5, "petal-width": 1.0} +147 {"sepal-length": 5.8, "sepal-width": 2.8, "petal-length": 5.1, "petal-width": 2.4} +148 {"sepal-length": 7.7, "sepal-width": 2.8, "petal-length": 6.7, "petal-width": 2.0} +149 {"sepal-length": 6.3, "sepal-width": 2.9, "petal-length": 5.6, "petal-width": 1.8} diff --git a/creg/test_data/iris.testresp b/creg/test_data/iris.testresp new file mode 100644 index 00000000..0952e4da --- /dev/null +++ b/creg/test_data/iris.testresp @@ -0,0 +1,50 @@ +100 Iris-virginica +101 Iris-virginica +102 Iris-setosa +103 Iris-setosa +104 Iris-setosa +105 Iris-setosa +106 Iris-versicolor +107 Iris-versicolor +108 Iris-setosa +109 Iris-versicolor +110 Iris-versicolor +111 Iris-virginica +112 Iris-setosa +113 Iris-versicolor +114 Iris-setosa +115 Iris-virginica +116 Iris-setosa +117 Iris-versicolor +118 Iris-virginica +119 Iris-virginica +120 Iris-versicolor +121 Iris-setosa +122 Iris-setosa +123 Iris-virginica +124 Iris-versicolor +125 Iris-versicolor +126 Iris-versicolor +127 Iris-setosa +128 Iris-virginica +129 Iris-virginica +130 Iris-virginica +131 Iris-versicolor +132 Iris-versicolor +133 Iris-versicolor +134 Iris-setosa +135 Iris-virginica +136 Iris-virginica +137 Iris-versicolor +138 Iris-setosa +139 Iris-virginica +140 Iris-virginica +141 Iris-virginica +142 Iris-versicolor +143 Iris-setosa +144 Iris-setosa +145 Iris-setosa +146 Iris-versicolor +147 Iris-virginica +148 Iris-virginica +149 Iris-virginica diff --git a/creg/test_data/iris.trainfeat b/creg/test_data/iris.trainfeat new file mode 100644 index 00000000..a930a446 --- /dev/null +++ b/creg/test_data/iris.trainfeat @@ -0,0 +1,100 @@ +0 {"sepal-length": 5.4, "sepal-width": 3.0, "petal-length": 4.5, "petal-width": 1.5} +1 {"sepal-length": 5.0, "sepal-width": 3.4, "petal-length": 1.6, "petal-width": 0.4} +2 {"sepal-length": 5.0, "sepal-width": 3.3, "petal-length": 1.4, "petal-width": 0.2} +3 {"sepal-length": 5.7, "sepal-width": 2.8, "petal-length": 4.5, "petal-width": 1.3} +4 {"sepal-length": 6.4, "sepal-width": 3.1, "petal-length": 5.5, "petal-width": 1.8} +5 {"sepal-length": 7.9, "sepal-width": 3.8, "petal-length": 6.4, "petal-width": 2.0} +6 {"sepal-length": 5.9, "sepal-width": 3.2, "petal-length": 4.8, "petal-width": 1.8} +7 {"sepal-length": 6.7, "sepal-width": 2.5, "petal-length": 5.8, "petal-width": 1.8} +8 {"sepal-length": 6.7, "sepal-width": 3.1, "petal-length": 4.4, "petal-width": 1.4} +9 {"sepal-length": 6.3, "sepal-width": 2.5, "petal-length": 4.9, "petal-width": 1.5} +10 {"sepal-length": 6.1, "sepal-width": 2.9, "petal-length": 4.7, "petal-width": 1.4} +11 {"sepal-length": 6.3, "sepal-width": 3.3, "petal-length": 4.7, "petal-width": 1.6} +12 {"sepal-length": 6.7, "sepal-width": 3.1, "petal-length": 4.7, "petal-width": 1.5} +13 {"sepal-length": 6.2, "sepal-width": 2.8, "petal-length": 4.8, "petal-width": 1.8} +14 {"sepal-length": 5.0, "sepal-width": 3.5, "petal-length": 1.3, "petal-width": 0.3} +15 {"sepal-length": 5.4, "sepal-width": 3.9, "petal-length": 1.3, "petal-width": 0.4} +16 {"sepal-length": 7.4, "sepal-width": 2.8, "petal-length": 6.1, "petal-width": 1.9} +17 {"sepal-length": 7.2, "sepal-width": 3.2, "petal-length": 6.0, "petal-width": 1.8} +18 {"sepal-length": 5.7, "sepal-width": 3.8, "petal-length": 1.7, "petal-width": 0.3} +19 {"sepal-length": 4.5, "sepal-width": 2.3, "petal-length": 1.3, "petal-width": 0.3} +20 {"sepal-length": 5.6, "sepal-width": 3.0, "petal-length": 4.1, "petal-width": 1.3} +21 {"sepal-length": 6.8, "sepal-width": 3.0, "petal-length": 5.5, "petal-width": 2.1} +22 {"sepal-length": 6.5, "sepal-width": 3.0, "petal-length": 5.8, "petal-width": 2.2} +23 {"sepal-length": 4.4, "sepal-width": 3.2, "petal-length": 1.3, "petal-width": 0.2} +24 {"sepal-length": 6.3, "sepal-width": 2.5, "petal-length": 5.0, "petal-width": 1.9} +25 {"sepal-length": 4.4, "sepal-width": 2.9, "petal-length": 1.4, "petal-width": 0.2} +26 {"sepal-length": 4.9, "sepal-width": 3.0, "petal-length": 1.4, "petal-width": 0.2} +27 {"sepal-length": 5.4, "sepal-width": 3.4, "petal-length": 1.5, "petal-width": 0.4} +28 {"sepal-length": 5.8, "sepal-width": 2.7, "petal-length": 3.9, "petal-width": 1.2} +29 {"sepal-length": 5.6, "sepal-width": 2.5, "petal-length": 3.9, "petal-width": 1.1} +30 {"sepal-length": 5.1, "sepal-width": 3.5, "petal-length": 1.4, "petal-width": 0.3} +31 {"sepal-length": 5.6, "sepal-width": 2.7, "petal-length": 4.2, "petal-width": 1.3} +32 {"sepal-length": 5.1, "sepal-width": 3.5, "petal-length": 1.4, "petal-width": 0.2} +33 {"sepal-length": 6.4, "sepal-width": 2.7, "petal-length": 5.3, "petal-width": 1.9} +34 {"sepal-length": 5.8, "sepal-width": 4.0, "petal-length": 1.2, "petal-width": 0.2} +35 {"sepal-length": 5.2, "sepal-width": 3.4, "petal-length": 1.4, "petal-width": 0.2} +36 {"sepal-length": 7.6, "sepal-width": 3.0, "petal-length": 6.6, "petal-width": 2.1} +37 {"sepal-length": 5.8, "sepal-width": 2.7, "petal-length": 5.1, "petal-width": 1.9} +38 {"sepal-length": 6.0, "sepal-width": 2.2, "petal-length": 4.0, "petal-width": 1.0} +39 {"sepal-length": 7.7, "sepal-width": 3.0, "petal-length": 6.1, "petal-width": 2.3} +40 {"sepal-length": 5.1, "sepal-width": 3.7, "petal-length": 1.5, "petal-width": 0.4} +41 {"sepal-length": 6.1, "sepal-width": 2.6, "petal-length": 5.6, "petal-width": 1.4} +42 {"sepal-length": 6.7, "sepal-width": 3.1, "petal-length": 5.6, "petal-width": 2.4} +43 {"sepal-length": 7.7, "sepal-width": 3.8, "petal-length": 6.7, "petal-width": 2.2} +44 {"sepal-length": 5.1, "sepal-width": 3.3, "petal-length": 1.7, "petal-width": 0.5} +45 {"sepal-length": 6.3, "sepal-width": 2.8, "petal-length": 5.1, "petal-width": 1.5} +46 {"sepal-length": 5.0, "sepal-width": 2.0, "petal-length": 3.5, "petal-width": 1.0} +47 {"sepal-length": 5.1, "sepal-width": 3.8, "petal-length": 1.5, "petal-width": 0.3} +48 {"sepal-length": 4.9, "sepal-width": 3.1, "petal-length": 1.5, "petal-width": 0.1} +49 {"sepal-length": 6.1, "sepal-width": 3.0, "petal-length": 4.9, "petal-width": 1.8} +50 {"sepal-length": 6.4, "sepal-width": 2.8, "petal-length": 5.6, "petal-width": 2.1} +51 {"sepal-length": 6.5, "sepal-width": 3.0, "petal-length": 5.5, "petal-width": 1.8} +52 {"sepal-length": 6.1, "sepal-width": 2.8, "petal-length": 4.7, "petal-width": 1.2} +53 {"sepal-length": 6.1, "sepal-width": 2.8, "petal-length": 4.0, "petal-width": 1.3} +54 {"sepal-length": 4.9, "sepal-width": 3.1, "petal-length": 1.5, "petal-width": 0.1} +55 {"sepal-length": 6.8, "sepal-width": 2.8, "petal-length": 4.8, "petal-width": 1.4} +56 {"sepal-length": 6.3, "sepal-width": 2.7, "petal-length": 4.9, "petal-width": 1.8} +57 {"sepal-length": 4.6, "sepal-width": 3.2, "petal-length": 1.4, "petal-width": 0.2} +58 {"sepal-length": 6.3, "sepal-width": 3.4, "petal-length": 5.6, "petal-width": 2.4} +59 {"sepal-length": 5.7, "sepal-width": 4.4, "petal-length": 1.5, "petal-width": 0.4} +60 {"sepal-length": 6.4, "sepal-width": 2.9, "petal-length": 4.3, "petal-width": 1.3} +61 {"sepal-length": 7.2, "sepal-width": 3.6, "petal-length": 6.1, "petal-width": 2.5} +62 {"sepal-length": 5.8, "sepal-width": 2.7, "petal-length": 4.1, "petal-width": 1.0} +63 {"sepal-length": 6.0, "sepal-width": 3.0, "petal-length": 4.8, "petal-width": 1.8} +64 {"sepal-length": 4.7, "sepal-width": 3.2, "petal-length": 1.6, "petal-width": 0.2} +65 {"sepal-length": 6.9, "sepal-width": 3.2, "petal-length": 5.7, "petal-width": 2.3} +66 {"sepal-length": 6.4, "sepal-width": 3.2, "petal-length": 4.5, "petal-width": 1.5} +67 {"sepal-length": 6.9, "sepal-width": 3.1, "petal-length": 5.4, "petal-width": 2.1} +68 {"sepal-length": 5.2, "sepal-width": 3.5, "petal-length": 1.5, "petal-width": 0.2} +69 {"sepal-length": 5.3, "sepal-width": 3.7, "petal-length": 1.5, "petal-width": 0.2} +70 {"sepal-length": 5.5, "sepal-width": 2.4, "petal-length": 3.8, "petal-width": 1.1} +71 {"sepal-length": 4.8, "sepal-width": 3.4, "petal-length": 1.9, "petal-width": 0.2} +72 {"sepal-length": 5.7, "sepal-width": 2.8, "petal-length": 4.1, "petal-width": 1.3} +73 {"sepal-length": 4.9, "sepal-width": 2.4, "petal-length": 3.3, "petal-width": 1.0} +74 {"sepal-length": 6.2, "sepal-width": 2.2, "petal-length": 4.5, "petal-width": 1.5} +75 {"sepal-length": 6.7, "sepal-width": 3.3, "petal-length": 5.7, "petal-width": 2.5} +76 {"sepal-length": 6.1, "sepal-width": 3.0, "petal-length": 4.6, "petal-width": 1.4} +77 {"sepal-length": 4.6, "sepal-width": 3.6, "petal-length": 1.0, "petal-width": 0.2} +78 {"sepal-length": 7.0, "sepal-width": 3.2, "petal-length": 4.7, "petal-width": 1.4} +79 {"sepal-length": 6.6, "sepal-width": 2.9, "petal-length": 4.6, "petal-width": 1.3} +80 {"sepal-length": 5.4, "sepal-width": 3.7, "petal-length": 1.5, "petal-width": 0.2} +81 {"sepal-length": 4.8, "sepal-width": 3.0, "petal-length": 1.4, "petal-width": 0.3} +82 {"sepal-length": 7.2, "sepal-width": 3.0, "petal-length": 5.8, "petal-width": 1.6} +83 {"sepal-length": 7.1, "sepal-width": 3.0, "petal-length": 5.9, "petal-width": 2.1} +84 {"sepal-length": 6.9, "sepal-width": 3.1, "petal-length": 4.9, "petal-width": 1.5} +85 {"sepal-length": 4.8, "sepal-width": 3.0, "petal-length": 1.4, "petal-width": 0.1} +86 {"sepal-length": 7.3, "sepal-width": 2.9, "petal-length": 6.3, "petal-width": 1.8} +87 {"sepal-length": 6.0, "sepal-width": 2.7, "petal-length": 5.1, "petal-width": 1.6} +88 {"sepal-length": 6.8, "sepal-width": 3.2, "petal-length": 5.9, "petal-width": 2.3} +89 {"sepal-length": 4.6, "sepal-width": 3.1, "petal-length": 1.5, "petal-width": 0.2} +90 {"sepal-length": 4.8, "sepal-width": 3.1, "petal-length": 1.6, "petal-width": 0.2} +91 {"sepal-length": 5.0, "sepal-width": 2.3, "petal-length": 3.3, "petal-width": 1.0} +92 {"sepal-length": 6.9, "sepal-width": 3.1, "petal-length": 5.1, "petal-width": 2.3} +93 {"sepal-length": 5.7, "sepal-width": 3.0, "petal-length": 4.2, "petal-width": 1.2} +94 {"sepal-length": 5.1, "sepal-width": 3.8, "petal-length": 1.9, "petal-width": 0.4} +95 {"sepal-length": 6.0, "sepal-width": 2.9, "petal-length": 4.5, "petal-width": 1.5} +96 {"sepal-length": 4.8, "sepal-width": 3.4, "petal-length": 1.6, "petal-width": 0.2} +97 {"sepal-length": 5.2, "sepal-width": 4.1, "petal-length": 1.5, "petal-width": 0.1} +98 {"sepal-length": 5.6, "sepal-width": 2.9, "petal-length": 3.6, "petal-width": 1.3} +99 {"sepal-length": 5.8, "sepal-width": 2.6, "petal-length": 4.0, "petal-width": 1.2} diff --git a/creg/test_data/iris.trainresp b/creg/test_data/iris.trainresp new file mode 100644 index 00000000..d77bc6a2 --- /dev/null +++ b/creg/test_data/iris.trainresp @@ -0,0 +1,100 @@ +0 Iris-versicolor +1 Iris-setosa +2 Iris-setosa +3 Iris-versicolor +4 Iris-virginica +5 Iris-virginica +6 Iris-versicolor +7 Iris-virginica +8 Iris-versicolor +9 Iris-versicolor +10 Iris-versicolor +11 Iris-versicolor +12 Iris-versicolor +13 Iris-virginica +14 Iris-setosa +15 Iris-setosa +16 Iris-virginica +17 Iris-virginica +18 Iris-setosa +19 Iris-setosa +20 Iris-versicolor +21 Iris-virginica +22 Iris-virginica +23 Iris-setosa +24 Iris-virginica +25 Iris-setosa +26 Iris-setosa +27 Iris-setosa +28 Iris-versicolor +29 Iris-versicolor +30 Iris-setosa +31 Iris-versicolor +32 Iris-setosa +33 Iris-virginica +34 Iris-setosa +35 Iris-setosa +36 Iris-virginica +37 Iris-virginica +38 Iris-versicolor +39 Iris-virginica +40 Iris-setosa +41 Iris-virginica +42 Iris-virginica +43 Iris-virginica +44 Iris-setosa +45 Iris-virginica +46 Iris-versicolor +47 Iris-setosa +48 Iris-setosa +49 Iris-virginica +50 Iris-virginica +51 Iris-virginica +52 Iris-versicolor +53 Iris-versicolor +54 Iris-setosa +55 Iris-versicolor +56 Iris-virginica +57 Iris-setosa +58 Iris-virginica +59 Iris-setosa +60 Iris-versicolor +61 Iris-virginica +62 Iris-versicolor +63 Iris-virginica +64 Iris-setosa +65 Iris-virginica +66 Iris-versicolor +67 Iris-virginica +68 Iris-setosa +69 Iris-setosa +70 Iris-versicolor +71 Iris-setosa +72 Iris-versicolor +73 Iris-versicolor +74 Iris-versicolor +75 Iris-virginica +76 Iris-versicolor +77 Iris-setosa +78 Iris-versicolor +79 Iris-versicolor +80 Iris-setosa +81 Iris-setosa +82 Iris-virginica +83 Iris-virginica +84 Iris-versicolor +85 Iris-setosa +86 Iris-virginica +87 Iris-versicolor +88 Iris-virginica +89 Iris-setosa +90 Iris-setosa +91 Iris-versicolor +92 Iris-virginica +93 Iris-versicolor +94 Iris-setosa +95 Iris-versicolor +96 Iris-setosa +97 Iris-setosa +98 Iris-versicolor +99 Iris-versicolor diff --git a/training/Makefile.am b/training/Makefile.am index 4b69ea94..991ac210 100644 --- a/training/Makefile.am +++ b/training/Makefile.am @@ -1,6 +1,5 @@ bin_PROGRAMS = \ model1 \ - creg \ lbl_model \ test_ngram \ mr_em_map_adapter \ @@ -24,9 +23,6 @@ noinst_PROGRAMS = \ TESTS = lbfgs_test optimize_test -creg_SOURCES = creg.cc -creg_LDADD = ./liblbfgs/liblbfgs.a $(top_srcdir)/utils/libutils.a -lz - mpi_online_optimize_SOURCES = mpi_online_optimize.cc online_optimizer.cc mpi_online_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz diff --git a/training/creg.cc b/training/creg.cc deleted file mode 100644 index 58adea00..00000000 --- a/training/creg.cc +++ /dev/null @@ -1,334 +0,0 @@ -#include -#include -#include -#include - -#include -#include - -#include "json_feature_map_lexer.h" -#include "prob.h" -#include "filelib.h" -#include "weights.h" -#include "sparse_vector.h" -#include "liblbfgs/lbfgs++.h" - -using namespace std; -using namespace std::tr1; -namespace po = boost::program_options; - -void InitCommandLine(int argc, char** argv, po::variables_map* conf) { - po::options_description opts("Configuration options"); - opts.add_options() - ("training_features,x", po::value(), "File containing training instance features (ARKRegression format)") - ("training_responses,y", po::value(), "File containing training response features (ARKRegression format)") - ("linear,n", "Linear (rather than logistic) regression") - ("l1",po::value()->default_value(0.0), "l_1 regularization strength") - ("l2",po::value()->default_value(0.0), "l_2 regularization strength") - ("weights,w", po::value(), "Initial weights") - ("epsilon,e", po::value()->default_value(1e-4), "Epsilon for convergence test. Terminates when ||g|| < epsilon * max(1, ||x||)") - ("memory_buffers,m",po::value()->default_value(40), "Number of memory buffers for LBFGS") - ("help,h", "Help"); - po::options_description dcmdline_options; - dcmdline_options.add(opts); - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - if (conf->count("help") || !conf->count("training_features") || !conf->count("training_responses")) { - cerr << dcmdline_options << endl; - exit(1); - } -} - -struct TrainingInstance { - SparseVector x; - union { - unsigned label; // for categorical predictions - float value; // for continuous predictions - } y; -}; - -struct ReaderHelper { - explicit ReaderHelper(vector* xyp) : xy_pairs(xyp), lc(), flag() {} - unordered_map id2ind; - vector* xy_pairs; - int lc; - bool flag; -}; - -void ReaderCB(const string& id, const SparseVector& fmap, void* extra) { - ReaderHelper& rh = *reinterpret_cast(extra); - ++rh.lc; - if (rh.lc % 1000 == 0) { cerr << '.'; rh.flag = true; } - if (rh.lc % 40000 == 0) { cerr << " [" << rh.lc << "]\n"; rh.flag = false; } - const unordered_map::iterator it = rh.id2ind.find(id); - if (it == rh.id2ind.end()) { - cerr << "Unlabeled example in line " << rh.lc << endl; - abort(); - } - (*rh.xy_pairs)[it->second - 1].x = fmap; -} - -void ReadLabeledInstances(const string& ffeats, - const string& fresp, - const bool is_continuous, - vector* xy_pairs, - vector* labels) { - bool flag = false; - xy_pairs->clear(); - int lc = 0; - ReaderHelper rh(xy_pairs); - unordered_map label2id; - cerr << "Reading training responses from " << fresp << " ..." << endl; - ReadFile fr(fresp); - for (unsigned i = 0; i < labels->size(); ++i) - label2id[(*labels)[i]] = i; - istream& in = *fr.stream(); - string line; - while(getline(in, line)) { - ++lc; - if (lc % 1000 == 0) { cerr << '.'; flag = true; } - if (lc % 40000 == 0) { cerr << " [" << lc << "]\n"; flag = false; } - if (line.size() == 0) continue; - if (line[0] == '#') continue; - unsigned p = 0; - while (p < line.size() && line[p] != ' ' && line[p] != '\t') { ++p; } - unsigned& ind = rh.id2ind[line.substr(0, p)]; - if (ind != 0) { cerr << "ID " << line.substr(0, p) << " duplicated in line " << lc << endl; abort(); } - while (p < line.size() && (line[p] == ' ' || line[p] == '\t')) { ++p; } - assert(p < line.size()); - xy_pairs->push_back(TrainingInstance()); - ind = xy_pairs->size(); - if (is_continuous) { - xy_pairs->back().y.value = strtof(&line[p], 0); - } else { // categorical predictions - unordered_map::iterator it = label2id.find(line.substr(p)); - if (it == label2id.end()) { - const string label = line.substr(p); - it = label2id.insert(make_pair(label, labels->size())).first; - labels->push_back(label); - } - xy_pairs->back().y.label = it->second; // label id - } - } - if (flag) cerr << endl; - if (!is_continuous) { - cerr << "LABELS:"; - for (unsigned j = 0; j < labels->size(); ++j) - cerr << " " << (*labels)[j]; - cerr << endl; - } - cerr << "Reading training features from " << ffeats << " ..." << endl; - ReadFile ff(ffeats); - JSONFeatureMapLexer::ReadRules(ff.stream(), ReaderCB, &rh); - if (rh.flag) cerr << endl; -} - -// helper base class (not polymorphic- just a container and some helper functions) for loss functions -// real loss functions should implement double operator()(const vector& x, double* g), -// which should evaluate f(x) and g = f'(x) -struct BaseLoss { - // dimp1 = number of categorial outputs possible for logistic regression - // for linear regression, it should be 1 more than the dimension of the response variable - BaseLoss( - const vector& tr, - unsigned dimp1, - unsigned numfeats, - unsigned ll2) : training(tr), K(dimp1), p(numfeats), l2(ll2) {} - - // weight vector layout for K classes, with p features - // w[0 : K-1] = bias weights - // w[y*p + K : y*p + K + p - 1] = feature weights for y^th class - // this representation is used in ComputeDotProducts and GradAdd - void ComputeDotProducts(const SparseVector& fx, // feature vector of x - const vector& w, // full weight vector - vector* pdotprods) const { - vector& dotprods = *pdotprods; - const unsigned km1 = K - 1; - dotprods.resize(km1); - for (unsigned y = 0; y < km1; ++y) - dotprods[y] = w[y]; // bias terms - for (SparseVector::const_iterator it = fx.begin(); it != fx.end(); ++it) { - const float fval = it->second; - const unsigned fid = it->first; - for (unsigned y = 0; y < km1; ++y) - dotprods[y] += w[fid + y * p + km1] * fval; - } - } - - double ApplyRegularizationTerms(const vector& weights, - double* g) const { - double reg = 0; - for (size_t i = K - 1; i < weights.size(); ++i) { - const double& w_i = weights[i]; - reg += l2 * w_i * w_i; - g[i] += 2 * l2 * w_i; - } - return reg; - } - - void GradAdd(const SparseVector& fx, - const unsigned y, - const double scale, - double* acc) const { - acc[y] += scale; // class bias - for (SparseVector::const_iterator it = fx.begin(); - it != fx.end(); ++it) - acc[it->first + y * p + K - 1] += it->second * scale; - } - - const vector& training; - const unsigned K, p; - const double l2; -}; - -struct UnivariateSquaredLoss : public BaseLoss { - UnivariateSquaredLoss( - const vector& tr, - unsigned numfeats, - const double l2) : BaseLoss(tr, 2, numfeats, l2) {} - - // evaluate squared loss and gradient - double operator()(const vector& x, double* g) const { - fill(g, g + x.size(), 0.0); - double cll = 0; - vector dotprods(1); // univariate prediction - for (int i = 0; i < training.size(); ++i) { - const SparseVector& fmapx = training[i].x; - const double refy = training[i].y.value; - ComputeDotProducts(fmapx, x, &dotprods); - double diff = dotprods[0] - refy; - cll += diff * diff; - - double scale = 2 * diff; - GradAdd(fmapx, 0, scale, g); - } - double reg = ApplyRegularizationTerms(x, g); - return cll + reg; - } -}; - -struct MulticlassLogLoss : public BaseLoss { - MulticlassLogLoss( - const vector& tr, - unsigned k, - unsigned numfeats, - const double l2) : BaseLoss(tr, k, numfeats, l2) {} - - // evaluate log loss and gradient - double operator()(const vector& x, double* g) const { - fill(g, g + x.size(), 0.0); - vector dotprods(K - 1); // K-1 degrees of freedom - vector probs(K); - double cll = 0; - for (int i = 0; i < training.size(); ++i) { - const SparseVector& fmapx = training[i].x; - const unsigned refy = training[i].y.label; - //cerr << "FMAP: " << fmapx << endl; - ComputeDotProducts(fmapx, x, &dotprods); - prob_t z; - for (unsigned j = 0; j < dotprods.size(); ++j) - z += (probs[j] = prob_t(dotprods[j], init_lnx())); - z += (probs.back() = prob_t::One()); - for (unsigned y = 0; y < probs.size(); ++y) { - probs[y] /= z; - //cerr << " p(y=" << y << ")=" << probs[y].as_float() << "\tz=" << z << endl; - } - cll -= log(probs[refy]); // log p(y | x) - - for (unsigned y = 0; y < dotprods.size(); ++y) { - double scale = probs[y].as_float(); - if (y == refy) { scale -= 1.0; } - GradAdd(fmapx, y, scale, g); - } - } - double reg = ApplyRegularizationTerms(x, g); - return cll + reg; - } -}; - -template -double LearnParameters(LossFunction& loss, - const double l1, - const unsigned l1_start, - const unsigned memory_buffers, - const double eps, - vector* px) { - LBFGS lbfgs(px, loss, memory_buffers, l1, l1_start, eps); - lbfgs.MinimizeFunction(); - return 0; -} - -int main(int argc, char** argv) { - po::variables_map conf; - InitCommandLine(argc, argv, &conf); - string line; - vector training; - const string xfile = conf["training_features"].as(); - const string yfile = conf["training_responses"].as(); - double l1 = conf["l1"].as(); - double l2 = conf["l2"].as(); - const unsigned memory_buffers = conf["memory_buffers"].as(); - const double epsilon = conf["epsilon"].as(); - if (l1 < 0.0) { - cerr << "L1 strength must be >= 0\n"; - return 1; - } - if (l2 < 0.0) { - cerr << "L2 strength must be >= 0\n"; - return 2; - } - - const bool is_continuous = conf.count("linear"); - vector labels; // only populated for non-continuous models - ReadLabeledInstances(xfile, yfile, is_continuous, &training, &labels); - - if (conf.count("weights")) { - cerr << "Initial weights are not implemented, please implement." << endl; - // TODO read weights for categorical and continuous predictions - // can't use normal cdec weight framework - abort(); - } - - cerr << " Number of features: " << FD::NumFeats() << endl; - cerr << "Number of training examples: " << training.size() << endl; - const unsigned p = FD::NumFeats(); - cout.precision(15); - - if (conf.count("linear")) { // linear regression - vector weights(1 + FD::NumFeats(), 0.0); - cerr << " Number of parameters: " << weights.size() << endl; - UnivariateSquaredLoss loss(training, p, l2); - LearnParameters(loss, l1, 1, memory_buffers, epsilon, &weights); - cout << p << "\t***CONTINUOUS***" << endl; - cout << "***BIAS***\t" << weights[0] << endl; - for (unsigned f = 0; f < p; ++f) { - const double w = weights[1 + f]; - if (w) - cout << FD::Convert(f) << "\t" << w << endl; - } - } else { // logistic regression - vector weights((1 + FD::NumFeats()) * (labels.size() - 1), 0.0); - cerr << " Number of parameters: " << weights.size() << endl; - cerr << " Number of labels: " << labels.size() << endl; - const unsigned K = labels.size(); - const unsigned km1 = K - 1; - MulticlassLogLoss loss(training, K, p, l2); - LearnParameters(loss, l1, km1, memory_buffers, epsilon, &weights); - - cout << p << "\t***CATEGORICAL***"; - for (unsigned y = 0; y < K; ++y) - cout << '\t' << labels[y]; - cout << endl; - for (unsigned y = 0; y < km1; ++y) - cout << labels[y] << "\t***BIAS***\t" << weights[y] << endl; - for (unsigned y = 0; y < km1; ++y) { - for (unsigned f = 0; f < p; ++f) { - const double w = weights[km1 + y * p + f]; - if (w) - cout << labels[y] << "\t" << FD::Convert(f) << "\t" << w << endl; - } - } - } - - return 0; -} - diff --git a/training/liblbfgs/lbfgs++.h b/training/liblbfgs/lbfgs++.h index 92ead955..2b40c19b 100644 --- a/training/liblbfgs/lbfgs++.h +++ b/training/liblbfgs/lbfgs++.h @@ -90,6 +90,7 @@ class LBFGS { lbfgsfloatval_t *g, const int n, const lbfgsfloatval_t step) { + (void) x; (void) n; (void) step; if (!silence) { ec++; std::cerr << '.'; } diff --git a/utils/Makefile.am b/utils/Makefile.am index b7da0f06..46650c75 100644 --- a/utils/Makefile.am +++ b/utils/Makefile.am @@ -33,16 +33,12 @@ libutils_a_SOURCES = \ sparse_vector.cc \ timing_stats.cc \ verbose.cc \ - json_feature_map_lexer.cc \ weights.cc if HAVE_CMPH libutils_a_SOURCES += perfect_hash.cc endif -json_feature_map_lexer.cc: json_feature_map_lexer.ll - $(LEX) -s -8 -CF -o$@ $< - phmt_SOURCES = phmt.cc ts_SOURCES = ts.cc m_test_SOURCES = m_test.cc diff --git a/utils/json_feature_map_lexer.h b/utils/json_feature_map_lexer.h deleted file mode 100644 index 3324aa29..00000000 --- a/utils/json_feature_map_lexer.h +++ /dev/null @@ -1,15 +0,0 @@ -#ifndef _RULE_LEXER_H_ -#define _RULE_LEXER_H_ - -#include -#include - -#include "sparse_vector.h" - -struct JSONFeatureMapLexer { - typedef void (*FeatureMapCallback)(const std::string& id, const SparseVector& fmap, void* extra); - static void ReadRules(std::istream* in, FeatureMapCallback func, void* extra); -}; - -#endif - diff --git a/utils/json_feature_map_lexer.ll b/utils/json_feature_map_lexer.ll deleted file mode 100644 index 372b52f5..00000000 --- a/utils/json_feature_map_lexer.ll +++ /dev/null @@ -1,132 +0,0 @@ -%option nounput -%{ - -#include "json_feature_map_lexer.h" -#include "fdict.h" -#include "fast_sparse_vector.h" - -#define YY_DECL int json_fmap_yylex (void) -#undef YY_INPUT -#define YY_INPUT(buf, result, max_size) (result = jfmap_stream->read(buf, max_size).gcount()) -#define YY_SKIP_YYWRAP 1 -int yywrap() { return 1; } - -JSONFeatureMapLexer::FeatureMapCallback json_fmap_callback = NULL; -void* json_fmap_callback_extra = NULL; -std::istream* jfmap_stream = NULL; -bool fl = true; -unsigned spos = 0; -char featname[16000]; -#define MAX_FEATS 20000 -std::pair featmap[MAX_FEATS]; -unsigned curfeat = 0; -std::string instid; - -inline unsigned unicode_escape_to_utf8(uint16_t w1, uint16_t w2, char* putf8) { - uint32_t cp; - if((w1 & 0xfc00) == 0xd800) { - if((w2 & 0xfc00) == 0xdc00) { - cp = 0x10000 + (((static_cast(w1) & 0x3ff) << 10) | (w2 & 0x3ff)); - } else { - abort(); - } - } else { - cp = w1; - } - - - if(cp < 0x80) { - putf8[0] = static_cast(cp); - return 1; - } else if(cp < 0x0800) { - putf8[0] = 0xc0 | ((cp >> 6) & 0x1f); - putf8[1] = 0x80 | (cp & 0x3f); - return 2; - } else if(cp < 0x10000) { - putf8[0] = 0xe0 | ((cp >> 6) & 0x0f); - putf8[1] = 0x80 | ((cp >> 6) & 0x3f); - putf8[2] = 0x80 | (cp & 0x3f); - return 3; - } else if(cp < 0x1fffff) { - putf8[0] = 0xf0 | ((cp >> 18) & 0x07); - putf8[1] = 0x80 | ((cp >> 12) & 0x3f); - putf8[2] = 0x80 | ((cp >> 6) & 0x3f); - putf8[3] = 0x80 | (cp & 0x3f); - return 4; - } else { - abort(); - } - return 0; -} - -%} - -ID [A-Za-z_0-9]+ -HEX_D [a-fA-F0-9] -INT [-]?[0-9]+ -DOUBLE {INT}((\.[0-9]+)?([eE][-+]?[0-9]+)?) -WS [ \t\r\n] -LCB [{] -RCB [}] -UNESCAPED_CH [^\"\\\b\n\r\f\t] - -%x JSON PREVAL STRING JSONVAL POSTVAL DOUBLE -%% - -{ID} { instid = yytext; BEGIN(JSON); } - -{WS}*{LCB}{WS}* { BEGIN(PREVAL); } - -\" { BEGIN(STRING); spos=0; } - -\" { featname[spos] = 0; - featmap[curfeat].first = FD::Convert(featname); - BEGIN(JSONVAL); - } -{UNESCAPED_CH} { featname[spos++] = yytext[0]; } -\\\" { featname[spos++] = '"'; } -\\\\ { featname[spos++] = '\\'; } -\\\/ { featname[spos++] = '/'; } -\\b { } -\\f { } -\\n { } -\\r { } -\\t { } -\\u{HEX_D}{HEX_D}{HEX_D}{HEX_D} { abort(); - } - -{WS}*:{WS}* { BEGIN(DOUBLE); } -{DOUBLE} { featmap[curfeat++].second = strtod(yytext, 0); - BEGIN(POSTVAL); } - -{WS}*,{WS}* { BEGIN(PREVAL); } -{WS}*{RCB}\n* { - const SparseVector x(&featmap[0], &featmap[curfeat]); - json_fmap_callback(instid, x, json_fmap_callback_extra); - curfeat = 0; - BEGIN(INITIAL); - } - -. { std::cerr << "bad input: " << yytext << std::endl; abort(); } - -%% - -void JSONFeatureMapLexer::ReadRules(std::istream* in, FeatureMapCallback func, void* extra) { - json_fmap_callback = func; - json_fmap_callback_extra = extra; - jfmap_stream = in; - json_fmap_yylex(); -} - -#if 0 -void cb(const std::string& id, const SparseVector& fmap, void* extra) { - (void) extra; - static int cc = 0; - cc++; -} - -int main() { - JSONFeatureMapLexer::ReadRules(&std::cin, cb, NULL); -} -#endif - -- cgit v1.2.3 From 076d48d459ecbf366b0a59ab6afe68af99bdcff2 Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Sun, 13 May 2012 22:20:06 -0700 Subject: eval stuff for creg, test data from ark regression --- Makefile.am | 2 +- configure.ac | 2 +- creg/README | 18 ++- creg/creg.cc | 60 +++++++- creg/json_feature_map_lexer.ll | 2 +- creg/test_data/auto-mpg.testfeat | 93 ++++++++++++ creg/test_data/auto-mpg.testresp | 93 ++++++++++++ creg/test_data/auto-mpg.trainfeat | 300 ++++++++++++++++++++++++++++++++++++++ creg/test_data/auto-mpg.trainresp | 300 ++++++++++++++++++++++++++++++++++++++ 9 files changed, 858 insertions(+), 12 deletions(-) create mode 100644 creg/test_data/auto-mpg.testfeat create mode 100644 creg/test_data/auto-mpg.testresp create mode 100644 creg/test_data/auto-mpg.trainfeat create mode 100644 creg/test_data/auto-mpg.trainresp diff --git a/Makefile.am b/Makefile.am index ea5e2b3f..0e08ee72 100644 --- a/Makefile.am +++ b/Makefile.am @@ -1,7 +1,7 @@ # warning - the subdirectories in the following list should # be kept in topologically sorted order. Also, DO NOT introduce # cyclic dependencies between these directories! -SUBDIRS = utils mteval klm/util klm/lm decoder phrasinator training training/liblbfgs mira dtrain dpmert pro-train rampion extools gi/pf gi/markov_al rst_parser +SUBDIRS = utils mteval klm/util klm/lm decoder phrasinator training training/liblbfgs creg mira dtrain dpmert pro-train rampion extools gi/pf gi/markov_al rst_parser #gi/pyp-topics/src gi/clda/src gi/posterior-regularisation/prjava diff --git a/configure.ac b/configure.ac index 849b100b..1e853fb6 100644 --- a/configure.ac +++ b/configure.ac @@ -130,4 +130,4 @@ then AM_CONDITIONAL([GLC], true) fi -AC_OUTPUT(Makefile rst_parser/Makefile utils/Makefile mteval/Makefile extools/Makefile decoder/Makefile phrasinator/Makefile training/Makefile training/liblbfgs/Makefile dpmert/Makefile pro-train/Makefile rampion/Makefile klm/util/Makefile klm/lm/Makefile mira/Makefile dtrain/Makefile gi/pyp-topics/src/Makefile gi/clda/src/Makefile gi/pf/Makefile gi/markov_al/Makefile) +AC_OUTPUT(Makefile rst_parser/Makefile utils/Makefile mteval/Makefile extools/Makefile decoder/Makefile phrasinator/Makefile training/Makefile training/liblbfgs/Makefile creg/Makefile dpmert/Makefile pro-train/Makefile rampion/Makefile klm/util/Makefile klm/lm/Makefile mira/Makefile dtrain/Makefile gi/pyp-topics/src/Makefile gi/clda/src/Makefile gi/pf/Makefile gi/markov_al/Makefile) diff --git a/creg/README b/creg/README index 2c04c83b..28a71d11 100644 --- a/creg/README +++ b/creg/README @@ -1,7 +1,17 @@ creg is a fast tool for training linear and logistic regression models with -l_1 and l_2 regularization. Its data (feature and response) format is compatible -with ARKRegression. +l_1 and l_2 regularization. Its data (feature and response) format is +compatible with ARKRegression. -Example invokation: -$ ./creg -x test_data/iris.trainfeat -y test_data/iris.trainresp --l2 100 +EXAMPLES + +Logistic regression example (training only): + $ ./creg -x test_data/iris.trainfeat -y test_data/iris.trainresp --l1 1.0 > weights.txt + +Logistic regression example (training and testing): + $ ./creg -x test_data/iris.trainfeat -y test_data/iris.trainresp --l1 1.0 \ + -t test_data/iris.testfeat -s test_data/iris.testresp > weights.txt + +Linear regression example (training and testing): + $ ./creg -n -x test_data/auto-mpg.trainfeat -y test_data/auto-mpg.trainresp --l2 1000 \ + -t test_data/auto-mpg.testfeat -s test_data/auto-mpg.testresp > weights.txt diff --git a/creg/creg.cc b/creg/creg.cc index 43f01bc4..005ec9ac 100644 --- a/creg/creg.cc +++ b/creg/creg.cc @@ -2,6 +2,8 @@ #include #include #include +#include +#include #include #include @@ -25,6 +27,8 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { ("linear,n", "Linear (rather than logistic) regression") ("l1",po::value()->default_value(0.0), "l_1 regularization strength") ("l2",po::value()->default_value(0.0), "l_2 regularization strength") + ("test_features,t", po::value(), "File containing training instance features (ARKRegression format)") + ("test_responses,s", po::value(), "File containing training response features (ARKRegression format)") ("weights,w", po::value(), "Initial weights") ("epsilon,e", po::value()->default_value(1e-4), "Epsilon for convergence test. Terminates when ||g|| < epsilon * max(1, ||w||)") ("memory_buffers,m",po::value()->default_value(40), "Number of memory buffers for LBFGS") @@ -77,7 +81,7 @@ void ReadLabeledInstances(const string& ffeats, int lc = 0; ReaderHelper rh(xy_pairs); unordered_map label2id; - cerr << "Reading training responses from " << fresp << " ..." << endl; + cerr << "Reading responses from " << fresp << " ..." << endl; ReadFile fr(fresp); for (unsigned i = 0; i < labels->size(); ++i) label2id[(*labels)[i]] = i; @@ -116,7 +120,7 @@ void ReadLabeledInstances(const string& ffeats, cerr << " " << (*labels)[j]; cerr << endl; } - cerr << "Reading training features from " << ffeats << " ..." << endl; + cerr << "Reading features from " << ffeats << " ..." << endl; ReadFile ff(ffeats); JSONFeatureMapLexer::ReadRules(ff.stream(), ReaderCB, &rh); if (rh.flag) cerr << endl; @@ -204,6 +208,23 @@ struct UnivariateSquaredLoss : public BaseLoss { double reg = ApplyRegularizationTerms(x, g); return cll + reg; } + + // return root mse + double Evaluate(const vector& test, + const vector& w) const { + vector dotprods(1); // K-1 degrees of freedom + double mse = 0; + for (unsigned i = 0; i < test.size(); ++i) { + const SparseVector& fmapx = test[i].x; + const float refy = test[i].y.value; + ComputeDotProducts(fmapx, w, &dotprods); + double diff = dotprods[0] - refy; + cerr << "line=" << (i+1) << " true=" << refy << " pred=" << dotprods[0] << endl; + mse += diff * diff; + } + mse /= test.size(); + return sqrt(mse); + } }; struct MulticlassLogLoss : public BaseLoss { @@ -243,6 +264,23 @@ struct MulticlassLogLoss : public BaseLoss { double reg = ApplyRegularizationTerms(x, g); return cll + reg; } + + double Evaluate(const vector& test, + const vector& w) const { + vector dotprods(K - 1); // K-1 degrees of freedom + double correct = 0; + for (unsigned i = 0; i < test.size(); ++i) { + const SparseVector& fmapx = test[i].x; + const unsigned refy = test[i].y.label; + ComputeDotProducts(fmapx, w, &dotprods); + double best = 0; + unsigned besty = dotprods.size(); + for (unsigned y = 0; y < dotprods.size(); ++y) + if (dotprods[y] > best) { best = dotprods[y]; besty = y; } + if (refy == besty) { ++correct; } + } + return correct / test.size(); + } }; template @@ -261,9 +299,6 @@ int main(int argc, char** argv) { po::variables_map conf; InitCommandLine(argc, argv, &conf); string line; - vector training; - const string xfile = conf["training_features"].as(); - const string yfile = conf["training_responses"].as(); double l1 = conf["l1"].as(); double l2 = conf["l2"].as(); const unsigned memory_buffers = conf["memory_buffers"].as(); @@ -278,8 +313,16 @@ int main(int argc, char** argv) { } const bool is_continuous = conf.count("linear"); + const string xfile = conf["training_features"].as(); + const string yfile = conf["training_responses"].as(); vector labels; // only populated for non-continuous models + vector training, test; ReadLabeledInstances(xfile, yfile, is_continuous, &training, &labels); + if (conf.count("test_features")) { + const string txfile = conf["test_features"].as(); + const string tyfile = conf["test_responses"].as(); + ReadLabeledInstances(txfile, tyfile, is_continuous, &test, &labels); + } if (conf.count("weights")) { cerr << "Initial weights are not implemented, please implement." << endl; @@ -298,6 +341,10 @@ int main(int argc, char** argv) { cerr << " Number of parameters: " << weights.size() << endl; UnivariateSquaredLoss loss(training, p, l2); LearnParameters(loss, l1, 1, memory_buffers, epsilon, &weights); + + if (test.size()) + cerr << "Held-out root MSE: " << loss.Evaluate(test, weights) << endl; + cout << p << "\t***CONTINUOUS***" << endl; cout << "***BIAS***\t" << weights[0] << endl; for (unsigned f = 0; f < p; ++f) { @@ -314,6 +361,9 @@ int main(int argc, char** argv) { MulticlassLogLoss loss(training, K, p, l2); LearnParameters(loss, l1, km1, memory_buffers, epsilon, &weights); + if (test.size()) + cerr << "Held-out accuracy: " << loss.Evaluate(test, weights) << endl; + cout << p << "\t***CATEGORICAL***"; for (unsigned y = 0; y < K; ++y) cout << '\t' << labels[y]; diff --git a/creg/json_feature_map_lexer.ll b/creg/json_feature_map_lexer.ll index 372b52f5..cbb6d9a9 100644 --- a/creg/json_feature_map_lexer.ll +++ b/creg/json_feature_map_lexer.ll @@ -61,7 +61,7 @@ inline unsigned unicode_escape_to_utf8(uint16_t w1, uint16_t w2, char* putf8) { %} -ID [A-Za-z_0-9]+ +ID [^ \t\n\r]+ HEX_D [a-fA-F0-9] INT [-]?[0-9]+ DOUBLE {INT}((\.[0-9]+)?([eE][-+]?[0-9]+)?) diff --git a/creg/test_data/auto-mpg.testfeat b/creg/test_data/auto-mpg.testfeat new file mode 100644 index 00000000..91c21e99 --- /dev/null +++ b/creg/test_data/auto-mpg.testfeat @@ -0,0 +1,93 @@ +test1_fiat_124b {"horsepower": 76.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 88.0, "weight": 2065.0} +test2_dodge_aspen {"horsepower": 110.0, "acceleration": 18.7, "cylinders": 6.0, "displacement": 225.0, "weight": 3620.0} +test3_toyota_celica_gt_liftback {"horsepower": 95.0, "acceleration": 14.8, "cylinders": 4.0, "displacement": 134.0, "weight": 2515.0} +test4_amc_matador {"horsepower": 110.0, "acceleration": 18.0, "cylinders": 6.0, "displacement": 258.0, "weight": 3632.0} +test5_audi_5000s_(diesel) {"horsepower": 67.0, "acceleration": 19.9, "cylinders": 5.0, "displacement": 121.0, "weight": 2950.0} +test6_datsun_310 {"horsepower": 65.0, "acceleration": 16.4, "cylinders": 4.0, "displacement": 86.0, "weight": 2019.0} +test7_chevrolet_woody {"horsepower": 60.0, "acceleration": 22.1, "cylinders": 4.0, "displacement": 98.0, "weight": 2164.0} +test8_volkswagen_1131_deluxe_sedan {"horsepower": 46.0, "acceleration": 20.5, "cylinders": 4.0, "displacement": 97.0, "weight": 1835.0} +test9_plymouth_satellite_sebring {"horsepower": 105.0, "acceleration": 16.5, "cylinders": 6.0, "displacement": 225.0, "weight": 3613.0} +test10_amc_matador {"horsepower": 120.0, "acceleration": 13.9, "cylinders": 8.0, "displacement": 304.0, "weight": 3962.0} +test11_chevrolet_chevette {"horsepower": 52.0, "acceleration": 22.2, "cylinders": 4.0, "displacement": 85.0, "weight": 2035.0} +test12_buick_century_special {"horsepower": 105.0, "acceleration": 15.8, "cylinders": 6.0, "displacement": 231.0, "weight": 3380.0} +test13_ford_escort_2h {"horsepower": 65.0, "acceleration": 20.7, "cylinders": 4.0, "displacement": 98.0, "weight": 2380.0} +test14_ford_torino_500 {"horsepower": 88.0, "acceleration": 15.5, "cylinders": 6.0, "displacement": 250.0, "weight": 3302.0} +test15_dodge_aries_wagon_(sw) {"horsepower": 92.0, "acceleration": 14.4, "cylinders": 4.0, "displacement": 156.0, "weight": 2620.0} +test16_plymouth_valiant {"horsepower": 105.0, "acceleration": 16.5, "cylinders": 6.0, "displacement": 225.0, "weight": 3121.0} +test17_amc_pacer {"horsepower": 90.0, "acceleration": 17.0, "cylinders": 6.0, "displacement": 232.0, "weight": 3211.0} +test18_honda_civic {"horsepower": 97.0, "acceleration": 15.0, "cylinders": 4.0, "displacement": 120.0, "weight": 2489.0} +test19_ford_ltd {"horsepower": 148.0, "acceleration": 13.5, "cylinders": 8.0, "displacement": 351.0, "weight": 4657.0} +test20_volkswagen_rabbit {"horsepower": 70.0, "acceleration": 14.0, "cylinders": 4.0, "displacement": 90.0, "weight": 1937.0} +test21_honda_civic_1500_gl {"horsepower": 67.0, "acceleration": 13.8, "cylinders": 4.0, "displacement": 91.0, "weight": 1850.0} +test22_chevrolet_impala {"horsepower": 165.0, "acceleration": 12.0, "cylinders": 8.0, "displacement": 350.0, "weight": 4209.0} +test23_chevrolet_chevette {"horsepower": 63.0, "acceleration": 17.0, "cylinders": 4.0, "displacement": 98.0, "weight": 2051.0} +test24_amc_concord {"horsepower": 90.0, "acceleration": 17.2, "cylinders": 6.0, "displacement": 232.0, "weight": 3210.0} +test25_ford_pinto {"horsepower": 83.0, "acceleration": 17.0, "cylinders": 4.0, "displacement": 140.0, "weight": 2639.0} +test26_ford_country_squire_(sw) {"horsepower": 142.0, "acceleration": 14.3, "cylinders": 8.0, "displacement": 351.0, "weight": 4054.0} +test27_plymouth_valiant_custom {"horsepower": 95.0, "acceleration": 16.0, "cylinders": 6.0, "displacement": 225.0, "weight": 3264.0} +test28_chevy_s-10 {"horsepower": 82.0, "acceleration": 19.4, "cylinders": 4.0, "displacement": 119.0, "weight": 2720.0} +test29_maxda_rx3 {"horsepower": 90.0, "acceleration": 13.5, "cylinders": 3.0, "displacement": 70.0, "weight": 2124.0} +test30_plymouth_sapporo {"horsepower": 105.0, "acceleration": 16.7, "cylinders": 4.0, "displacement": 156.0, "weight": 2745.0} +test31_amc_hornet {"horsepower": 90.0, "acceleration": 17.6, "cylinders": 6.0, "displacement": 232.0, "weight": 3085.0} +test32_chevrolet_caprice_classic {"horsepower": 145.0, "acceleration": 12.5, "cylinders": 8.0, "displacement": 305.0, "weight": 3880.0} +test33_pontiac_sunbird_coupe {"horsepower": 88.0, "acceleration": 16.0, "cylinders": 4.0, "displacement": 151.0, "weight": 2740.0} +test34_mercury_marquis_brougham {"horsepower": 198.0, "acceleration": 11.5, "cylinders": 8.0, "displacement": 429.0, "weight": 4952.0} +test35_mercury_monarch_ghia {"horsepower": 139.0, "acceleration": 12.8, "cylinders": 8.0, "displacement": 302.0, "weight": 3570.0} +test36_ford_country_squire_(sw) {"horsepower": 170.0, "acceleration": 12.0, "cylinders": 8.0, "displacement": 400.0, "weight": 4746.0} +test37_audi_fox {"horsepower": 83.0, "acceleration": 16.5, "cylinders": 4.0, "displacement": 98.0, "weight": 2219.0} +test38_triumph_tr7_coupe {"horsepower": 88.0, "acceleration": 15.1, "cylinders": 4.0, "displacement": 122.0, "weight": 2500.0} +test39_dodge_d100 {"horsepower": 150.0, "acceleration": 14.0, "cylinders": 8.0, "displacement": 318.0, "weight": 3755.0} +test40_mercury_cougar_brougham {"horsepower": 130.0, "acceleration": 14.9, "cylinders": 8.0, "displacement": 302.0, "weight": 4295.0} +test41_pontiac_phoenix_lj {"horsepower": 105.0, "acceleration": 19.2, "cylinders": 6.0, "displacement": 231.0, "weight": 3535.0} +test42_vw_rabbit_custom {"horsepower": 71.0, "acceleration": 14.0, "cylinders": 4.0, "displacement": 89.0, "weight": 1925.0} +test43_peugeot_504 {"horsepower": 87.0, "acceleration": 17.5, "cylinders": 4.0, "displacement": 110.0, "weight": 2672.0} +test44_datsun_310_gx {"horsepower": 67.0, "acceleration": 16.2, "cylinders": 4.0, "displacement": 91.0, "weight": 1995.0} +test45_dodge_monaco_(sw) {"horsepower": 180.0, "acceleration": 11.5, "cylinders": 8.0, "displacement": 383.0, "weight": 4955.0} +test46_chevrolet_monza_2+2 {"horsepower": 110.0, "acceleration": 13.5, "cylinders": 8.0, "displacement": 262.0, "weight": 3221.0} +test47_capri_ii {"horsepower": 92.0, "acceleration": 14.9, "cylinders": 4.0, "displacement": 140.0, "weight": 2572.0} +test48_mazda_rx2_coupe {"horsepower": 97.0, "acceleration": 13.5, "cylinders": 3.0, "displacement": 70.0, "weight": 2330.0} +test49_plymouth_fury {"horsepower": 95.0, "acceleration": 19.0, "cylinders": 6.0, "displacement": 225.0, "weight": 3785.0} +test50_plymouth_fury_iii {"horsepower": 215.0, "acceleration": 8.5, "cylinders": 8.0, "displacement": 440.0, "weight": 4312.0} +test51_dodge_st._regis {"horsepower": 135.0, "acceleration": 15.2, "cylinders": 8.0, "displacement": 318.0, "weight": 3830.0} +test52_amc_spirit_dl {"horsepower": 80.0, "acceleration": 15.0, "cylinders": 4.0, "displacement": 121.0, "weight": 2670.0} +test53_peugeot_504_(sw) {"horsepower": 87.0, "acceleration": 19.5, "cylinders": 4.0, "displacement": 120.0, "weight": 2979.0} +test54_chevroelt_chevelle_malibu {"horsepower": 105.0, "acceleration": 18.5, "cylinders": 6.0, "displacement": 250.0, "weight": 3897.0} +test55_opel_1900 {"horsepower": 90.0, "acceleration": 14.0, "cylinders": 4.0, "displacement": 116.0, "weight": 2123.0} +test56_dodge_challenger_se {"horsepower": 170.0, "acceleration": 10.0, "cylinders": 8.0, "displacement": 383.0, "weight": 3563.0} +test57_vw_pickup {"horsepower": 52.0, "acceleration": 24.6, "cylinders": 4.0, "displacement": 97.0, "weight": 2130.0} +test58_peugeot_604sl {"horsepower": 133.0, "acceleration": 15.8, "cylinders": 6.0, "displacement": 163.0, "weight": 3410.0} +test59_mazda_glc_4 {"horsepower": 68.0, "acceleration": 16.0, "cylinders": 4.0, "displacement": 91.0, "weight": 1985.0} +test60_audi_4000 {"horsepower": 78.0, "acceleration": 15.8, "cylinders": 4.0, "displacement": 97.0, "weight": 2188.0} +test61_plymouth_duster {"horsepower": 95.0, "acceleration": 16.5, "cylinders": 6.0, "displacement": 198.0, "weight": 3102.0} +test62_dodge_magnum_xe {"horsepower": 140.0, "acceleration": 13.7, "cylinders": 8.0, "displacement": 318.0, "weight": 4080.0} +test63_buick_century_limited {"horsepower": 110.0, "acceleration": 16.4, "cylinders": 6.0, "displacement": 181.0, "weight": 2945.0} +test64_chevrolet_monte_carlo_s {"horsepower": 145.0, "acceleration": 13.0, "cylinders": 8.0, "displacement": 350.0, "weight": 4082.0} +test65_amc_matador {"horsepower": 150.0, "acceleration": 11.5, "cylinders": 8.0, "displacement": 304.0, "weight": 3672.0} +test66_honda_accord {"horsepower": 75.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 107.0, "weight": 2205.0} +test67_plymouth_volare {"horsepower": 100.0, "acceleration": 17.2, "cylinders": 6.0, "displacement": 225.0, "weight": 3430.0} +test68_ford_galaxie_500 {"horsepower": 198.0, "acceleration": 10.0, "cylinders": 8.0, "displacement": 429.0, "weight": 4341.0} +test69_chevrolet_citation {"horsepower": 110.0, "acceleration": 12.6, "cylinders": 6.0, "displacement": 173.0, "weight": 2725.0} +test70_amc_ambassador_sst {"horsepower": 150.0, "acceleration": 11.5, "cylinders": 8.0, "displacement": 304.0, "weight": 3672.0} +test71_ford_thunderbird {"horsepower": 149.0, "acceleration": 14.5, "cylinders": 8.0, "displacement": 351.0, "weight": 4335.0} +test72_pontiac_phoenix {"horsepower": 90.0, "acceleration": 13.2, "cylinders": 4.0, "displacement": 151.0, "weight": 2556.0} +test73_vw_rabbit {"horsepower": 76.0, "acceleration": 14.7, "cylinders": 4.0, "displacement": 98.0, "weight": 2144.0} +test74_bmw_2002 {"horsepower": 113.0, "acceleration": 12.5, "cylinders": 4.0, "displacement": 121.0, "weight": 2234.0} +test75_dodge_colt {"horsepower": 105.0, "acceleration": 14.4, "cylinders": 4.0, "displacement": 156.0, "weight": 2800.0} +test76_mercury_capri_2000 {"horsepower": 86.0, "acceleration": 14.0, "cylinders": 4.0, "displacement": 122.0, "weight": 2220.0} +test77_ford_galaxie_500 {"horsepower": 153.0, "acceleration": 13.5, "cylinders": 8.0, "displacement": 351.0, "weight": 4154.0} +test78_volkswagen_rabbit_custom_diesel {"horsepower": 48.0, "acceleration": 21.5, "cylinders": 4.0, "displacement": 90.0, "weight": 1985.0} +test79_dodge_aspen_se {"horsepower": 100.0, "acceleration": 17.7, "cylinders": 6.0, "displacement": 225.0, "weight": 3651.0} +test80_mazda_glc_deluxe {"horsepower": 52.0, "acceleration": 19.4, "cylinders": 4.0, "displacement": 78.0, "weight": 1985.0} +test81_mazda_glc_custom {"horsepower": 68.0, "acceleration": 17.6, "cylinders": 4.0, "displacement": 91.0, "weight": 1970.0} +test82_audi_100ls {"horsepower": 91.0, "acceleration": 14.0, "cylinders": 4.0, "displacement": 114.0, "weight": 2582.0} +test83_oldsmobile_delta_88_royale {"horsepower": 160.0, "acceleration": 13.5, "cylinders": 8.0, "displacement": 350.0, "weight": 4456.0} +test84_ford_gran_torino {"horsepower": 137.0, "acceleration": 14.5, "cylinders": 8.0, "displacement": 302.0, "weight": 4042.0} +test85_plymouth_cricket {"horsepower": 70.0, "acceleration": 20.5, "cylinders": 4.0, "displacement": 91.0, "weight": 1955.0} +test86_plymouth_fury_iii {"horsepower": 150.0, "acceleration": 13.0, "cylinders": 8.0, "displacement": 318.0, "weight": 4096.0} +test87_plymouth_horizon {"horsepower": 70.0, "acceleration": 13.2, "cylinders": 4.0, "displacement": 105.0, "weight": 2200.0} +test88_peugeot_504 {"horsepower": 88.0, "acceleration": 21.9, "cylinders": 4.0, "displacement": 120.0, "weight": 3270.0} +test89_dodge_dart_custom {"horsepower": 150.0, "acceleration": 11.0, "cylinders": 8.0, "displacement": 318.0, "weight": 3399.0} +test90_pontiac_j2000_se_hatchback {"horsepower": 85.0, "acceleration": 16.2, "cylinders": 4.0, "displacement": 112.0, "weight": 2575.0} +test91_toyota_starlet {"horsepower": 58.0, "acceleration": 16.9, "cylinders": 4.0, "displacement": 79.0, "weight": 1755.0} +test92_mazda_glc_custom_l {"horsepower": 68.0, "acceleration": 18.2, "cylinders": 4.0, "displacement": 91.0, "weight": 2025.0} +test93_fiat_124_tc {"horsepower": 75.0, "acceleration": 14.0, "cylinders": 4.0, "displacement": 116.0, "weight": 2246.0} diff --git a/creg/test_data/auto-mpg.testresp b/creg/test_data/auto-mpg.testresp new file mode 100644 index 00000000..4f2cad37 --- /dev/null +++ b/creg/test_data/auto-mpg.testresp @@ -0,0 +1,93 @@ +test1_fiat_124b 30.0 +test2_dodge_aspen 18.6 +test3_toyota_celica_gt_liftback 21.1 +test4_amc_matador 16.0 +test5_audi_5000s_(diesel) 36.4 +test6_datsun_310 37.2 +test7_chevrolet_woody 24.5 +test8_volkswagen_1131_deluxe_sedan 26.0 +test9_plymouth_satellite_sebring 18.0 +test10_amc_matador 15.5 +test11_chevrolet_chevette 29.0 +test12_buick_century_special 20.6 +test13_ford_escort_2h 29.9 +test14_ford_torino_500 19.0 +test15_dodge_aries_wagon_(sw) 25.8 +test16_plymouth_valiant 18.0 +test17_amc_pacer 19.0 +test18_honda_civic 24.0 +test19_ford_ltd 14.0 +test20_volkswagen_rabbit 29.0 +test21_honda_civic_1500_gl 44.6 +test22_chevrolet_impala 14.0 +test23_chevrolet_chevette 30.5 +test24_amc_concord 19.4 +test25_ford_pinto 23.0 +test26_ford_country_squire_(sw) 15.5 +test27_plymouth_valiant_custom 19.0 +test28_chevy_s-10 31.0 +test29_maxda_rx3 18.0 +test30_plymouth_sapporo 23.2 +test31_amc_hornet 22.5 +test32_chevrolet_caprice_classic 17.5 +test33_pontiac_sunbird_coupe 24.5 +test34_mercury_marquis_brougham 12.0 +test35_mercury_monarch_ghia 20.2 +test36_ford_country_squire_(sw) 13.0 +test37_audi_fox 29.0 +test38_triumph_tr7_coupe 35.0 +test39_dodge_d100 13.0 +test40_mercury_cougar_brougham 15.0 +test41_pontiac_phoenix_lj 19.2 +test42_vw_rabbit_custom 31.9 +test43_peugeot_504 25.0 +test44_datsun_310_gx 38.0 +test45_dodge_monaco_(sw) 12.0 +test46_chevrolet_monza_2+2 20.0 +test47_capri_ii 25.0 +test48_mazda_rx2_coupe 19.0 +test49_plymouth_fury 18.0 +test50_plymouth_fury_iii 14.0 +test51_dodge_st._regis 18.2 +test52_amc_spirit_dl 27.4 +test53_peugeot_504_(sw) 21.0 +test54_chevroelt_chevelle_malibu 16.0 +test55_opel_1900 28.0 +test56_dodge_challenger_se 15.0 +test57_vw_pickup 44.0 +test58_peugeot_604sl 16.2 +test59_mazda_glc_4 34.1 +test60_audi_4000 34.3 +test61_plymouth_duster 20.0 +test62_dodge_magnum_xe 17.5 +test63_buick_century_limited 25.0 +test64_chevrolet_monte_carlo_s 15.0 +test65_amc_matador 14.0 +test66_honda_accord 36.0 +test67_plymouth_volare 20.5 +test68_ford_galaxie_500 15.0 +test69_chevrolet_citation 23.5 +test70_amc_ambassador_sst 17.0 +test71_ford_thunderbird 16.0 +test72_pontiac_phoenix 33.5 +test73_vw_rabbit 41.5 +test74_bmw_2002 26.0 +test75_dodge_colt 27.9 +test76_mercury_capri_2000 23.0 +test77_ford_galaxie_500 14.0 +test78_volkswagen_rabbit_custom_diesel 43.1 +test79_dodge_aspen_se 20.0 +test80_mazda_glc_deluxe 32.8 +test81_mazda_glc_custom 31.0 +test82_audi_100ls 20.0 +test83_oldsmobile_delta_88_royale 12.0 +test84_ford_gran_torino 14.0 +test85_plymouth_cricket 26.0 +test86_plymouth_fury_iii 14.0 +test87_plymouth_horizon 34.2 +test88_peugeot_504 19.0 +test89_dodge_dart_custom 15.0 +test90_pontiac_j2000_se_hatchback 31.0 +test91_toyota_starlet 39.1 +test92_mazda_glc_custom_l 37.0 +test93_fiat_124_tc 26.0 diff --git a/creg/test_data/auto-mpg.trainfeat b/creg/test_data/auto-mpg.trainfeat new file mode 100644 index 00000000..20b87d3f --- /dev/null +++ b/creg/test_data/auto-mpg.trainfeat @@ -0,0 +1,300 @@ +train1_buick_century_350 {"horsepower": 175.0, "acceleration": 13.0, "cylinders": 8.0, "displacement": 350.0, "weight": 4100.0} +train2_audi_100_ls {"horsepower": 90.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 107.0, "weight": 2430.0} +train3_chrysler_newport_royal {"horsepower": 190.0, "acceleration": 12.5, "cylinders": 8.0, "displacement": 400.0, "weight": 4422.0} +train4_mercury_zephyr_6 {"horsepower": 85.0, "acceleration": 18.2, "cylinders": 6.0, "displacement": 200.0, "weight": 2990.0} +train5_volkswagen_model_111 {"horsepower": 60.0, "acceleration": 19.0, "cylinders": 4.0, "displacement": 97.0, "weight": 1834.0} +train6_dodge_monaco_brougham {"horsepower": 145.0, "acceleration": 13.7, "cylinders": 8.0, "displacement": 318.0, "weight": 4140.0} +train7_mercedes-benz_240d {"horsepower": 67.0, "acceleration": 21.8, "cylinders": 4.0, "displacement": 146.0, "weight": 3250.0} +train8_datsun_510_(sw) {"horsepower": 92.0, "acceleration": 17.0, "cylinders": 4.0, "displacement": 97.0, "weight": 2288.0} +train9_opel_manta {"horsepower": 75.0, "acceleration": 15.5, "cylinders": 4.0, "displacement": 116.0, "weight": 2158.0} +train10_renault_12_(sw) {"horsepower": 69.0, "acceleration": 18.0, "cylinders": 4.0, "displacement": 96.0, "weight": 2189.0} +train11_chevrolet_nova {"horsepower": 100.0, "acceleration": 17.0, "cylinders": 6.0, "displacement": 250.0, "weight": 3336.0} +train12_plymouth_arrow_gs {"horsepower": 96.0, "acceleration": 15.5, "cylinders": 4.0, "displacement": 122.0, "weight": 2300.0} +train13_toyota_mark_ii {"horsepower": 108.0, "acceleration": 15.5, "cylinders": 6.0, "displacement": 156.0, "weight": 2930.0} +train14_chevrolet_caprice_classic {"horsepower": 150.0, "acceleration": 12.0, "cylinders": 8.0, "displacement": 400.0, "weight": 4464.0} +train15_ford_maverick {"horsepower": 88.0, "acceleration": 16.5, "cylinders": 6.0, "displacement": 250.0, "weight": 3021.0} +train16_pontiac_lemans_v6 {"horsepower": 115.0, "acceleration": 15.4, "cylinders": 6.0, "displacement": 231.0, "weight": 3245.0} +train17_ford_granada_gl {"horsepower": 88.0, "acceleration": 17.1, "cylinders": 6.0, "displacement": 200.0, "weight": 3060.0} +train18_chevrolet_monte_carlo_landau {"horsepower": 170.0, "acceleration": 11.4, "cylinders": 8.0, "displacement": 350.0, "weight": 4165.0} +train19_subaru {"horsepower": 93.0, "acceleration": 15.5, "cylinders": 4.0, "displacement": 108.0, "weight": 2391.0} +train20_volkswagen_411_(sw) {"horsepower": 76.0, "acceleration": 18.0, "cylinders": 4.0, "displacement": 121.0, "weight": 2511.0} +train21_chrysler_lebaron_salon {"horsepower": 85.0, "acceleration": 16.6, "cylinders": 6.0, "displacement": 225.0, "weight": 3465.0} +train22_volkswagen_jetta {"horsepower": 74.0, "acceleration": 14.2, "cylinders": 4.0, "displacement": 105.0, "weight": 2190.0} +train23_dodge_coronet_brougham {"horsepower": 150.0, "acceleration": 13.0, "cylinders": 8.0, "displacement": 318.0, "weight": 4190.0} +train24_pontiac_safari_(sw) {"horsepower": 175.0, "acceleration": 12.0, "cylinders": 8.0, "displacement": 400.0, "weight": 5140.0} +train25_mazda_rx-7_gs {"horsepower": 100.0, "acceleration": 12.5, "cylinders": 3.0, "displacement": 70.0, "weight": 2420.0} +train26_datsun_210 {"horsepower": 65.0, "acceleration": 19.2, "cylinders": 4.0, "displacement": 85.0, "weight": 2110.0} +train27_vw_rabbit_c_(diesel) {"horsepower": 48.0, "acceleration": 21.7, "cylinders": 4.0, "displacement": 90.0, "weight": 2085.0} +train28_nissan_stanza_xe {"horsepower": 88.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 120.0, "weight": 2160.0} +train29_audi_5000 {"horsepower": 103.0, "acceleration": 15.9, "cylinders": 5.0, "displacement": 131.0, "weight": 2830.0} +train30_chevrolet_malibu {"horsepower": 145.0, "acceleration": 13.0, "cylinders": 8.0, "displacement": 350.0, "weight": 3988.0} +train31_mercury_capri_v6 {"horsepower": 107.0, "acceleration": 14.0, "cylinders": 6.0, "displacement": 155.0, "weight": 2472.0} +train32_datsun_b210_gx {"horsepower": 70.0, "acceleration": 18.6, "cylinders": 4.0, "displacement": 85.0, "weight": 2070.0} +train33_volkswagen_dasher {"horsepower": 67.0, "acceleration": 15.5, "cylinders": 4.0, "displacement": 79.0, "weight": 1963.0} +train34_volvo_145e_(sw) {"horsepower": 112.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 121.0, "weight": 2933.0} +train35_chrysler_lebaron_medallion {"horsepower": 92.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 156.0, "weight": 2585.0} +train36_pontiac_catalina {"horsepower": 170.0, "acceleration": 11.5, "cylinders": 8.0, "displacement": 400.0, "weight": 4668.0} +train37_toyota_tercel {"horsepower": 62.0, "acceleration": 17.3, "cylinders": 4.0, "displacement": 89.0, "weight": 2050.0} +train38_datsun_f-10_hatchback {"horsepower": 70.0, "acceleration": 16.8, "cylinders": 4.0, "displacement": 85.0, "weight": 1945.0} +train39_chrysler_lebaron_town_@_country_(sw) {"horsepower": 150.0, "acceleration": 13.0, "cylinders": 8.0, "displacement": 360.0, "weight": 3940.0} +train40_buick_century {"horsepower": 110.0, "acceleration": 15.8, "cylinders": 6.0, "displacement": 231.0, "weight": 3415.0} +train41_amc_matador_(sw) {"horsepower": 150.0, "acceleration": 12.5, "cylinders": 8.0, "displacement": 304.0, "weight": 3892.0} +train42_honda_civic {"horsepower": 67.0, "acceleration": 15.0, "cylinders": 4.0, "displacement": 91.0, "weight": 1965.0} +train43_dodge_coronet_custom_(sw) {"horsepower": 150.0, "acceleration": 13.5, "cylinders": 8.0, "displacement": 318.0, "weight": 4457.0} +train44_bmw_320i {"horsepower": 110.0, "acceleration": 12.8, "cylinders": 4.0, "displacement": 121.0, "weight": 2600.0} +train45_mercury_marquis {"horsepower": 208.0, "acceleration": 11.0, "cylinders": 8.0, "displacement": 429.0, "weight": 4633.0} +train46_amc_matador_(sw) {"horsepower": 150.0, "acceleration": 15.5, "cylinders": 8.0, "displacement": 304.0, "weight": 4257.0} +train47_ford_ltd {"horsepower": 158.0, "acceleration": 13.0, "cylinders": 8.0, "displacement": 351.0, "weight": 4363.0} +train48_toyota_corolla_1200 {"horsepower": 65.0, "acceleration": 19.0, "cylinders": 4.0, "displacement": 71.0, "weight": 1773.0} +train49_amc_ambassador_brougham {"horsepower": 175.0, "acceleration": 11.0, "cylinders": 8.0, "displacement": 360.0, "weight": 3821.0} +train50_ford_galaxie_500 {"horsepower": 153.0, "acceleration": 13.0, "cylinders": 8.0, "displacement": 351.0, "weight": 4129.0} +train51_amc_concord_d/l {"horsepower": 120.0, "acceleration": 15.1, "cylinders": 6.0, "displacement": 258.0, "weight": 3410.0} +train52_amc_matador {"horsepower": 100.0, "acceleration": 15.5, "cylinders": 6.0, "displacement": 232.0, "weight": 3288.0} +train53_toyota_corona {"horsepower": 96.0, "acceleration": 13.5, "cylinders": 4.0, "displacement": 134.0, "weight": 2702.0} +train54_plymouth_reliant {"horsepower": 84.0, "acceleration": 15.7, "cylinders": 4.0, "displacement": 135.0, "weight": 2490.0} +train55_ford_pinto {"horsepower": 97.0, "acceleration": 14.5, "cylinders": 6.0, "displacement": 171.0, "weight": 2984.0} +train56_datsun_810 {"horsepower": 97.0, "acceleration": 14.5, "cylinders": 6.0, "displacement": 146.0, "weight": 2815.0} +train57_fiat_x1.9 {"horsepower": 67.0, "acceleration": 16.0, "cylinders": 4.0, "displacement": 79.0, "weight": 2000.0} +train58_mercury_zephyr {"horsepower": 85.0, "acceleration": 16.7, "cylinders": 6.0, "displacement": 200.0, "weight": 3070.0} +train59_toyota_corolla_1600_(sw) {"horsepower": 88.0, "acceleration": 16.5, "cylinders": 4.0, "displacement": 97.0, "weight": 2100.0} +train60_chevrolet_chevette {"horsepower": 68.0, "acceleration": 16.5, "cylinders": 4.0, "displacement": 98.0, "weight": 2155.0} +train61_toyota_cressida {"horsepower": 116.0, "acceleration": 12.6, "cylinders": 6.0, "displacement": 168.0, "weight": 2900.0} +train62_toyota_corolla {"horsepower": 70.0, "acceleration": 16.9, "cylinders": 4.0, "displacement": 108.0, "weight": 2245.0} +train63_datsun_710 {"horsepower": 97.0, "acceleration": 17.0, "cylinders": 4.0, "displacement": 119.0, "weight": 2545.0} +train64_mercury_grand_marquis {"horsepower": 138.0, "acceleration": 13.2, "cylinders": 8.0, "displacement": 351.0, "weight": 3955.0} +train65_plymouth_champ {"horsepower": 64.0, "acceleration": 16.4, "cylinders": 4.0, "displacement": 86.0, "weight": 1875.0} +train66_datsun_200-sx {"horsepower": 97.0, "acceleration": 14.9, "cylinders": 4.0, "displacement": 119.0, "weight": 2405.0} +train67_chevrolet_nova {"horsepower": 105.0, "acceleration": 16.0, "cylinders": 6.0, "displacement": 250.0, "weight": 3459.0} +train68_hi_1200d {"horsepower": 193.0, "acceleration": 18.5, "cylinders": 8.0, "displacement": 304.0, "weight": 4732.0} +train69_ford_country {"horsepower": 167.0, "acceleration": 12.5, "cylinders": 8.0, "displacement": 400.0, "weight": 4906.0} +train70_plymouth_valiant {"horsepower": 100.0, "acceleration": 15.4, "cylinders": 6.0, "displacement": 225.0, "weight": 3233.0} +train71_amc_gremlin {"horsepower": 100.0, "acceleration": 16.0, "cylinders": 6.0, "displacement": 232.0, "weight": 2914.0} +train72_ford_pinto_runabout {"horsepower": 86.0, "acceleration": 16.5, "cylinders": 4.0, "displacement": 122.0, "weight": 2226.0} +train73_chevrolet_monte_carlo_landau {"horsepower": 145.0, "acceleration": 13.2, "cylinders": 8.0, "displacement": 305.0, "weight": 3425.0} +train74_amc_concord_dl_6 {"horsepower": 90.0, "acceleration": 18.2, "cylinders": 6.0, "displacement": 232.0, "weight": 3265.0} +train75_pontiac_firebird {"horsepower": 100.0, "acceleration": 15.0, "cylinders": 6.0, "displacement": 250.0, "weight": 3282.0} +train76_chevrolet_cavalier_2-door {"horsepower": 88.0, "acceleration": 18.0, "cylinders": 4.0, "displacement": 112.0, "weight": 2395.0} +train77_mercedes-benz_280s {"horsepower": 120.0, "acceleration": 16.7, "cylinders": 6.0, "displacement": 168.0, "weight": 3820.0} +train78_dodge_d200 {"horsepower": 210.0, "acceleration": 13.5, "cylinders": 8.0, "displacement": 318.0, "weight": 4382.0} +train79_amc_hornet {"horsepower": 97.0, "acceleration": 15.5, "cylinders": 6.0, "displacement": 199.0, "weight": 2774.0} +train80_plymouth_reliant {"horsepower": 84.0, "acceleration": 12.9, "cylinders": 4.0, "displacement": 135.0, "weight": 2385.0} +train81_amc_hornet {"horsepower": 100.0, "acceleration": 16.0, "cylinders": 6.0, "displacement": 232.0, "weight": 2901.0} +train82_toyota_corona_liftback {"horsepower": 90.0, "acceleration": 15.5, "cylinders": 4.0, "displacement": 134.0, "weight": 2711.0} +train83_ford_maverick {"horsepower": 72.0, "acceleration": 19.5, "cylinders": 6.0, "displacement": 250.0, "weight": 3158.0} +train84_cadillac_eldorado {"horsepower": 125.0, "acceleration": 17.4, "cylinders": 8.0, "displacement": 350.0, "weight": 3900.0} +train85_mercury_monarch {"horsepower": 72.0, "acceleration": 21.0, "cylinders": 6.0, "displacement": 250.0, "weight": 3432.0} +train86_buick_skylark {"horsepower": 105.0, "acceleration": 16.9, "cylinders": 6.0, "displacement": 231.0, "weight": 3425.0} +train87_chevrolet_cavalier {"horsepower": 88.0, "acceleration": 19.6, "cylinders": 4.0, "displacement": 112.0, "weight": 2605.0} +train88_chevrolet_vega {"horsepower": 90.0, "acceleration": 19.5, "cylinders": 4.0, "displacement": 140.0, "weight": 2408.0} +train89_ford_torino {"horsepower": 140.0, "acceleration": 10.5, "cylinders": 8.0, "displacement": 302.0, "weight": 3449.0} +train90_chevrolet_chevelle_malibu {"horsepower": 130.0, "acceleration": 12.0, "cylinders": 8.0, "displacement": 307.0, "weight": 3504.0} +train91_toyota_corona {"horsepower": 52.0, "acceleration": 16.5, "cylinders": 4.0, "displacement": 76.0, "weight": 1649.0} +train92_buick_opel_isuzu_deluxe {"horsepower": 80.0, "acceleration": 14.8, "cylinders": 4.0, "displacement": 111.0, "weight": 2155.0} +train93_volvo_244dl {"horsepower": 98.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 121.0, "weight": 2945.0} +train94_opel_1900 {"horsepower": 81.0, "acceleration": 16.9, "cylinders": 4.0, "displacement": 116.0, "weight": 2220.0} +train95_peugeot_304 {"horsepower": 70.0, "acceleration": 19.5, "cylinders": 4.0, "displacement": 79.0, "weight": 2074.0} +train96_toyota_celica_gt {"horsepower": 96.0, "acceleration": 13.9, "cylinders": 4.0, "displacement": 144.0, "weight": 2665.0} +train97_buick_estate_wagon_(sw) {"horsepower": 155.0, "acceleration": 14.9, "cylinders": 8.0, "displacement": 350.0, "weight": 4360.0} +train98_volvo_245 {"horsepower": 102.0, "acceleration": 15.7, "cylinders": 4.0, "displacement": 130.0, "weight": 3150.0} +train99_chevrolet_impala {"horsepower": 150.0, "acceleration": 14.0, "cylinders": 8.0, "displacement": 400.0, "weight": 4997.0} +train100_chevrolet_bel_air {"horsepower": 145.0, "acceleration": 14.0, "cylinders": 8.0, "displacement": 350.0, "weight": 4440.0} +train101_datsun_pl510 {"horsepower": 88.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 97.0, "weight": 2130.0} +train102_saab_99gle {"horsepower": 115.0, "acceleration": 15.7, "cylinders": 4.0, "displacement": 121.0, "weight": 2795.0} +train103_renault_12tl {"horsepower": 83.0, "acceleration": 15.3, "cylinders": 4.0, "displacement": 101.0, "weight": 2202.0} +train104_pontiac_catalina {"horsepower": 175.0, "acceleration": 12.0, "cylinders": 8.0, "displacement": 400.0, "weight": 4385.0} +train105_subaru {"horsepower": 67.0, "acceleration": 17.8, "cylinders": 4.0, "displacement": 97.0, "weight": 2065.0} +train106_chevrolet_chevette {"horsepower": 70.0, "acceleration": 15.5, "cylinders": 4.0, "displacement": 98.0, "weight": 2120.0} +train107_saab_99le {"horsepower": 115.0, "acceleration": 13.5, "cylinders": 4.0, "displacement": 121.0, "weight": 2671.0} +train108_amc_rebel_sst {"horsepower": 150.0, "acceleration": 12.0, "cylinders": 8.0, "displacement": 304.0, "weight": 3433.0} +train109_ford_gran_torino {"horsepower": 140.0, "acceleration": 14.0, "cylinders": 8.0, "displacement": 302.0, "weight": 4141.0} +train110_ford_mustang_ii_2+2 {"horsepower": 89.0, "acceleration": 15.8, "cylinders": 4.0, "displacement": 140.0, "weight": 2755.0} +train111_ford_pinto {"horsepower": 80.0, "acceleration": 16.5, "cylinders": 4.0, "displacement": 122.0, "weight": 2451.0} +train112_toyota_corolla {"horsepower": 75.0, "acceleration": 16.8, "cylinders": 4.0, "displacement": 108.0, "weight": 2350.0} +train113_toyota_carina {"horsepower": 88.0, "acceleration": 19.0, "cylinders": 4.0, "displacement": 97.0, "weight": 2279.0} +train114_amc_hornet {"horsepower": 100.0, "acceleration": 16.0, "cylinders": 6.0, "displacement": 232.0, "weight": 2945.0} +train115_plymouth_horizon_4 {"horsepower": 63.0, "acceleration": 14.9, "cylinders": 4.0, "displacement": 105.0, "weight": 2215.0} +train116_chevrolet_nova {"horsepower": 105.0, "acceleration": 14.5, "cylinders": 6.0, "displacement": 250.0, "weight": 3353.0} +train117_fiat_128 {"horsepower": 75.0, "acceleration": 15.5, "cylinders": 4.0, "displacement": 90.0, "weight": 2108.0} +train118_dodge_coronet_custom {"horsepower": 150.0, "acceleration": 12.5, "cylinders": 8.0, "displacement": 318.0, "weight": 3777.0} +train119_volkswagen_rabbit {"horsepower": 71.0, "acceleration": 12.2, "cylinders": 4.0, "displacement": 97.0, "weight": 1825.0} +train120_chevrolet_camaro {"horsepower": 90.0, "acceleration": 17.3, "cylinders": 4.0, "displacement": 151.0, "weight": 2950.0} +train121_ford_gran_torino_(sw) {"horsepower": 140.0, "acceleration": 16.0, "cylinders": 8.0, "displacement": 302.0, "weight": 4294.0} +train122_subaru_dl {"horsepower": 67.0, "acceleration": 16.4, "cylinders": 4.0, "displacement": 97.0, "weight": 1985.0} +train123_mazda_626 {"horsepower": 75.0, "acceleration": 17.5, "cylinders": 4.0, "displacement": 120.0, "weight": 2542.0} +train124_oldsmobile_cutlass_salon_brougham {"horsepower": 90.0, "acceleration": 22.2, "cylinders": 8.0, "displacement": 260.0, "weight": 3420.0} +train125_volvo_144ea {"horsepower": 112.0, "acceleration": 15.5, "cylinders": 4.0, "displacement": 121.0, "weight": 2868.0} +train126_plymouth_satellite {"horsepower": 150.0, "acceleration": 11.0, "cylinders": 8.0, "displacement": 318.0, "weight": 3436.0} +train127_amc_gremlin {"horsepower": 100.0, "acceleration": 15.0, "cylinders": 6.0, "displacement": 232.0, "weight": 2789.0} +train128_chevrolet_malibu_classic_(sw) {"horsepower": 125.0, "acceleration": 15.0, "cylinders": 8.0, "displacement": 267.0, "weight": 3605.0} +train129_toyota_corolla {"horsepower": 75.0, "acceleration": 16.0, "cylinders": 4.0, "displacement": 97.0, "weight": 2171.0} +train130_buick_skylark_320 {"horsepower": 165.0, "acceleration": 11.5, "cylinders": 8.0, "displacement": 350.0, "weight": 3693.0} +train131_toyota_corona_mark_ii {"horsepower": 95.0, "acceleration": 15.0, "cylinders": 4.0, "displacement": 113.0, "weight": 2372.0} +train132_ford_gran_torino {"horsepower": 152.0, "acceleration": 12.8, "cylinders": 8.0, "displacement": 351.0, "weight": 4215.0} +train133_dodge_colt {"horsepower": 79.0, "acceleration": 17.7, "cylinders": 4.0, "displacement": 98.0, "weight": 2255.0} +train134_pontiac_ventura_sj {"horsepower": 110.0, "acceleration": 16.2, "cylinders": 6.0, "displacement": 250.0, "weight": 3645.0} +train135_oldsmobile_cutlass_ls {"horsepower": 105.0, "acceleration": 19.0, "cylinders": 8.0, "displacement": 350.0, "weight": 3725.0} +train136_toyouta_corona_mark_ii_(sw) {"horsepower": 97.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 120.0, "weight": 2506.0} +train137_amc_gremlin {"horsepower": 100.0, "acceleration": 13.0, "cylinders": 6.0, "displacement": 232.0, "weight": 2634.0} +train138_chevrolet_malibu {"horsepower": 95.0, "acceleration": 18.2, "cylinders": 6.0, "displacement": 200.0, "weight": 3155.0} +train139_oldsmobile_starfire_sx {"horsepower": 85.0, "acceleration": 17.6, "cylinders": 4.0, "displacement": 151.0, "weight": 2855.0} +train140_amc_ambassador_dpl {"horsepower": 190.0, "acceleration": 8.5, "cylinders": 8.0, "displacement": 390.0, "weight": 3850.0} +train141_volkswagen_scirocco {"horsepower": 71.0, "acceleration": 14.9, "cylinders": 4.0, "displacement": 89.0, "weight": 1990.0} +train142_plymouth_satellite_custom_(sw) {"horsepower": 150.0, "acceleration": 14.0, "cylinders": 8.0, "displacement": 318.0, "weight": 4077.0} +train143_toyota_corolla_liftback {"horsepower": 75.0, "acceleration": 18.2, "cylinders": 4.0, "displacement": 97.0, "weight": 2265.0} +train144_ford_fairmont {"horsepower": 88.0, "acceleration": 18.1, "cylinders": 4.0, "displacement": 140.0, "weight": 2870.0} +train145_plymouth_fury_gran_sedan {"horsepower": 150.0, "acceleration": 14.5, "cylinders": 8.0, "displacement": 318.0, "weight": 4237.0} +train146_buick_century_luxus_(sw) {"horsepower": 150.0, "acceleration": 14.5, "cylinders": 8.0, "displacement": 350.0, "weight": 4699.0} +train147_ford_granada_ghia {"horsepower": 78.0, "acceleration": 21.0, "cylinders": 6.0, "displacement": 250.0, "weight": 3574.0} +train148_dodge_charger_2.2 {"horsepower": 84.0, "acceleration": 13.0, "cylinders": 4.0, "displacement": 135.0, "weight": 2370.0} +train149_chevrolet_concours {"horsepower": 110.0, "acceleration": 16.4, "cylinders": 6.0, "displacement": 250.0, "weight": 3520.0} +train150_toyota_corona {"horsepower": 95.0, "acceleration": 14.2, "cylinders": 4.0, "displacement": 134.0, "weight": 2560.0} +train151_pontiac_grand_prix_lj {"horsepower": 180.0, "acceleration": 11.1, "cylinders": 8.0, "displacement": 400.0, "weight": 4220.0} +train152_dodge_colt_m/m {"horsepower": 83.0, "acceleration": 15.9, "cylinders": 4.0, "displacement": 98.0, "weight": 2075.0} +train153_pontiac_astro {"horsepower": 78.0, "acceleration": 18.5, "cylinders": 4.0, "displacement": 140.0, "weight": 2592.0} +train154_amc_gremlin {"horsepower": 90.0, "acceleration": 15.0, "cylinders": 6.0, "displacement": 199.0, "weight": 2648.0} +train155_fiat_strada_custom {"horsepower": 69.0, "acceleration": 14.7, "cylinders": 4.0, "displacement": 91.0, "weight": 2130.0} +train156_toyota_corona_hardtop {"horsepower": 95.0, "acceleration": 15.5, "cylinders": 4.0, "displacement": 113.0, "weight": 2278.0} +train157_datsun_b210 {"horsepower": 67.0, "acceleration": 19.0, "cylinders": 4.0, "displacement": 79.0, "weight": 1950.0} +train158_volkswagen_dasher {"horsepower": 78.0, "acceleration": 14.1, "cylinders": 4.0, "displacement": 97.0, "weight": 2190.0} +train159_plymouth_duster {"horsepower": 95.0, "acceleration": 16.0, "cylinders": 6.0, "displacement": 198.0, "weight": 2904.0} +train160_mazda_626 {"horsepower": 74.0, "acceleration": 18.3, "cylinders": 4.0, "displacement": 120.0, "weight": 2635.0} +train161_buick_lesabre_custom {"horsepower": 155.0, "acceleration": 13.5, "cylinders": 8.0, "displacement": 350.0, "weight": 4502.0} +train162_chevrolet_monte_carlo {"horsepower": 150.0, "acceleration": 9.5, "cylinders": 8.0, "displacement": 400.0, "weight": 3761.0} +train163_peugeot_505s_turbo_diesel {"horsepower": 80.0, "acceleration": 20.4, "cylinders": 4.0, "displacement": 141.0, "weight": 3230.0} +train164_datsun_610 {"horsepower": 94.0, "acceleration": 16.5, "cylinders": 4.0, "displacement": 108.0, "weight": 2379.0} +train165_ford_granada {"horsepower": 98.0, "acceleration": 19.0, "cylinders": 6.0, "displacement": 250.0, "weight": 3525.0} +train166_pontiac_grand_prix {"horsepower": 230.0, "acceleration": 9.5, "cylinders": 8.0, "displacement": 400.0, "weight": 4278.0} +train167_cadillac_seville {"horsepower": 180.0, "acceleration": 12.1, "cylinders": 8.0, "displacement": 350.0, "weight": 4380.0} +train168_amc_concord {"horsepower": 90.0, "acceleration": 20.1, "cylinders": 4.0, "displacement": 151.0, "weight": 3003.0} +train169_ford_mustang_gl {"horsepower": 86.0, "acceleration": 15.6, "cylinders": 4.0, "displacement": 140.0, "weight": 2790.0} +train170_amc_matador {"horsepower": 110.0, "acceleration": 19.0, "cylinders": 6.0, "displacement": 258.0, "weight": 3730.0} +train171_ford_gran_torino_(sw) {"horsepower": 140.0, "acceleration": 16.0, "cylinders": 8.0, "displacement": 302.0, "weight": 4638.0} +train172_datsun_510_hatchback {"horsepower": 92.0, "acceleration": 15.0, "cylinders": 4.0, "displacement": 119.0, "weight": 2434.0} +train173_dodge_rampage {"horsepower": 84.0, "acceleration": 11.6, "cylinders": 4.0, "displacement": 135.0, "weight": 2295.0} +train174_datsun_b-210 {"horsepower": 70.0, "acceleration": 17.0, "cylinders": 4.0, "displacement": 85.0, "weight": 1990.0} +train175_datsun_210_mpg {"horsepower": 65.0, "acceleration": 19.4, "cylinders": 4.0, "displacement": 85.0, "weight": 1975.0} +train176_plymouth_horizon_tc3 {"horsepower": 70.0, "acceleration": 14.9, "cylinders": 4.0, "displacement": 105.0, "weight": 2150.0} +train177_ford_pinto {"horsepower": 85.0, "acceleration": 18.5, "cylinders": 4.0, "displacement": 122.0, "weight": 2310.0} +train178_chrysler_new_yorker_brougham {"horsepower": 215.0, "acceleration": 11.0, "cylinders": 8.0, "displacement": 440.0, "weight": 4735.0} +train179_chrysler_cordoba {"horsepower": 190.0, "acceleration": 12.2, "cylinders": 8.0, "displacement": 400.0, "weight": 4325.0} +train180_oldsmobile_cutlass_salon_brougham {"horsepower": 110.0, "acceleration": 15.5, "cylinders": 8.0, "displacement": 260.0, "weight": 3365.0} +train181_plymouth_satellite_custom {"horsepower": 105.0, "acceleration": 15.5, "cylinders": 6.0, "displacement": 225.0, "weight": 3439.0} +train182_maxda_glc_deluxe {"horsepower": 65.0, "acceleration": 15.2, "cylinders": 4.0, "displacement": 86.0, "weight": 1975.0} +train183_datsun_1200 {"horsepower": 69.0, "acceleration": 18.0, "cylinders": 4.0, "displacement": 72.0, "weight": 1613.0} +train184_ford_pinto {"horsepower": 72.0, "acceleration": 13.6, "cylinders": 4.0, "displacement": 140.0, "weight": 2565.0} +train185_volkswagen_rabbit_l {"horsepower": 74.0, "acceleration": 15.3, "cylinders": 4.0, "displacement": 105.0, "weight": 1980.0} +train186_audi_100ls {"horsepower": 95.0, "acceleration": 15.0, "cylinders": 4.0, "displacement": 115.0, "weight": 2694.0} +train187_chevrolet_citation {"horsepower": 115.0, "acceleration": 11.3, "cylinders": 6.0, "displacement": 173.0, "weight": 2595.0} +train188_buick_electra_225_custom {"horsepower": 225.0, "acceleration": 11.0, "cylinders": 8.0, "displacement": 455.0, "weight": 4951.0} +train189_datsun_200sx {"horsepower": 100.0, "acceleration": 14.8, "cylinders": 4.0, "displacement": 119.0, "weight": 2615.0} +train190_dodge_colt_hatchback_custom {"horsepower": 80.0, "acceleration": 14.4, "cylinders": 4.0, "displacement": 98.0, "weight": 1915.0} +train191_honda_accord_lx {"horsepower": 68.0, "acceleration": 16.6, "cylinders": 4.0, "displacement": 98.0, "weight": 2135.0} +train192_plymouth_custom_suburb {"horsepower": 170.0, "acceleration": 13.0, "cylinders": 8.0, "displacement": 360.0, "weight": 4654.0} +train193_toyota_mark_ii {"horsepower": 122.0, "acceleration": 13.5, "cylinders": 6.0, "displacement": 156.0, "weight": 2807.0} +train194_oldsmobile_omega_brougham {"horsepower": 115.0, "acceleration": 12.9, "cylinders": 6.0, "displacement": 173.0, "weight": 2700.0} +train195_ford_ltd_landau {"horsepower": 129.0, "acceleration": 13.4, "cylinders": 8.0, "displacement": 302.0, "weight": 3725.0} +train196_chevy_c10 {"horsepower": 145.0, "acceleration": 12.0, "cylinders": 8.0, "displacement": 350.0, "weight": 4055.0} +train197_dodge_colt {"horsepower": 75.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 90.0, "weight": 2125.0} +train198_oldsmobile_cutlass_supreme {"horsepower": 110.0, "acceleration": 19.0, "cylinders": 8.0, "displacement": 260.0, "weight": 4060.0} +train199_ford_pinto_(sw) {"horsepower": 86.0, "acceleration": 16.0, "cylinders": 4.0, "displacement": 122.0, "weight": 2395.0} +train200_chevrolet_vega {"horsepower": 75.0, "acceleration": 17.0, "cylinders": 4.0, "displacement": 140.0, "weight": 2542.0} +train201_pontiac_catalina_brougham {"horsepower": 175.0, "acceleration": 11.5, "cylinders": 8.0, "displacement": 400.0, "weight": 4464.0} +train202_ford_futura {"horsepower": 139.0, "acceleration": 11.2, "cylinders": 8.0, "displacement": 302.0, "weight": 3205.0} +train203_honda_civic {"horsepower": 53.0, "acceleration": 17.4, "cylinders": 4.0, "displacement": 91.0, "weight": 1795.0} +train204_ford_mustang {"horsepower": 88.0, "acceleration": 14.5, "cylinders": 6.0, "displacement": 250.0, "weight": 3139.0} +train205_chevrolet_vega_(sw) {"horsepower": 72.0, "acceleration": 19.0, "cylinders": 4.0, "displacement": 140.0, "weight": 2408.0} +train206_buick_century {"horsepower": 110.0, "acceleration": 21.0, "cylinders": 6.0, "displacement": 231.0, "weight": 3907.0} +train207_dodge_aspen {"horsepower": 90.0, "acceleration": 18.7, "cylinders": 6.0, "displacement": 225.0, "weight": 3381.0} +train208_subaru_dl {"horsepower": 67.0, "acceleration": 18.0, "cylinders": 4.0, "displacement": 97.0, "weight": 2145.0} +train209_plymouth_fury_iii {"horsepower": 150.0, "acceleration": 13.5, "cylinders": 8.0, "displacement": 318.0, "weight": 4135.0} +train210_fiat_128 {"horsepower": 49.0, "acceleration": 19.5, "cylinders": 4.0, "displacement": 68.0, "weight": 1867.0} +train211_volvo_264gl {"horsepower": 125.0, "acceleration": 13.6, "cylinders": 6.0, "displacement": 163.0, "weight": 3140.0} +train212_dodge_aries_se {"horsepower": 84.0, "acceleration": 16.0, "cylinders": 4.0, "displacement": 135.0, "weight": 2525.0} +train213_datsun_510 {"horsepower": 97.0, "acceleration": 14.7, "cylinders": 4.0, "displacement": 119.0, "weight": 2300.0} +train214_chevrolet_chevelle_malibu_classic {"horsepower": 100.0, "acceleration": 17.0, "cylinders": 6.0, "displacement": 250.0, "weight": 3781.0} +train215_ford_ranger {"horsepower": 79.0, "acceleration": 18.6, "cylinders": 4.0, "displacement": 120.0, "weight": 2625.0} +train216_vw_dasher_(diesel) {"horsepower": 48.0, "acceleration": 23.7, "cylinders": 4.0, "displacement": 90.0, "weight": 2335.0} +train217_chevy_c20 {"horsepower": 200.0, "acceleration": 15.0, "cylinders": 8.0, "displacement": 307.0, "weight": 4376.0} +train218_buick_skyhawk {"horsepower": 110.0, "acceleration": 15.0, "cylinders": 6.0, "displacement": 231.0, "weight": 3039.0} +train219_peugeot_504 {"horsepower": 88.0, "acceleration": 17.0, "cylinders": 4.0, "displacement": 120.0, "weight": 2957.0} +train220_ford_f250 {"horsepower": 215.0, "acceleration": 14.0, "cylinders": 8.0, "displacement": 360.0, "weight": 4615.0} +train221_dodge_diplomat {"horsepower": 140.0, "acceleration": 13.2, "cylinders": 8.0, "displacement": 318.0, "weight": 3735.0} +train222_honda_civic_(auto) {"horsepower": 67.0, "acceleration": 15.7, "cylinders": 4.0, "displacement": 91.0, "weight": 1965.0} +train223_chevrolet_caprice_classic {"horsepower": 130.0, "acceleration": 15.4, "cylinders": 8.0, "displacement": 305.0, "weight": 3840.0} +train224_toyota_corolla_1200 {"horsepower": 65.0, "acceleration": 21.0, "cylinders": 4.0, "displacement": 71.0, "weight": 1836.0} +train225_plymouth_volare_premier_v8 {"horsepower": 150.0, "acceleration": 13.2, "cylinders": 8.0, "displacement": 318.0, "weight": 3940.0} +train226_opel_manta {"horsepower": 78.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 97.0, "weight": 2300.0} +train227_mercedes_benz_300d {"horsepower": 77.0, "acceleration": 20.1, "cylinders": 5.0, "displacement": 183.0, "weight": 3530.0} +train228_chevrolet_cavalier_wagon {"horsepower": 88.0, "acceleration": 18.6, "cylinders": 4.0, "displacement": 112.0, "weight": 2640.0} +train229_vw_rabbit {"horsepower": 70.0, "acceleration": 14.2, "cylinders": 4.0, "displacement": 90.0, "weight": 1937.0} +train230_toyota_corolla {"horsepower": 75.0, "acceleration": 15.2, "cylinders": 4.0, "displacement": 108.0, "weight": 2265.0} +train231_buick_estate_wagon_(sw) {"horsepower": 225.0, "acceleration": 10.0, "cylinders": 8.0, "displacement": 455.0, "weight": 3086.0} +train232_ford_f108 {"horsepower": 130.0, "acceleration": 15.0, "cylinders": 8.0, "displacement": 302.0, "weight": 3870.0} +train233_oldsmobile_omega {"horsepower": 180.0, "acceleration": 11.0, "cylinders": 8.0, "displacement": 350.0, "weight": 3664.0} +train234_oldsmobile_cutlass_ciera_(diesel) {"horsepower": 85.0, "acceleration": 17.0, "cylinders": 6.0, "displacement": 262.0, "weight": 3015.0} +train235_chevrolet_impala {"horsepower": 220.0, "acceleration": 9.0, "cylinders": 8.0, "displacement": 454.0, "weight": 4354.0} +train236_volkswagen_dasher {"horsepower": 71.0, "acceleration": 16.5, "cylinders": 4.0, "displacement": 90.0, "weight": 2223.0} +train237_ford_fairmont_futura {"horsepower": 92.0, "acceleration": 16.4, "cylinders": 4.0, "displacement": 140.0, "weight": 2865.0} +train238_datsun_210 {"horsepower": 65.0, "acceleration": 19.2, "cylinders": 4.0, "displacement": 85.0, "weight": 2020.0} +train239_honda_accord_cvcc {"horsepower": 68.0, "acceleration": 18.5, "cylinders": 4.0, "displacement": 98.0, "weight": 2045.0} +train240_mazda_glc {"horsepower": 65.0, "acceleration": 17.9, "cylinders": 4.0, "displacement": 86.0, "weight": 2110.0} +train241_chevrolet_citation {"horsepower": 90.0, "acceleration": 16.5, "cylinders": 4.0, "displacement": 151.0, "weight": 2678.0} +train242_datsun_810_maxima {"horsepower": 120.0, "acceleration": 13.8, "cylinders": 6.0, "displacement": 146.0, "weight": 2930.0} +train243_ford_maverick {"horsepower": 85.0, "acceleration": 16.0, "cylinders": 6.0, "displacement": 200.0, "weight": 2587.0} +train244_fiat_124_sport_coupe {"horsepower": 90.0, "acceleration": 15.5, "cylinders": 4.0, "displacement": 98.0, "weight": 2265.0} +train245_chevrolet_vega {"horsepower": 72.0, "acceleration": 19.5, "cylinders": 4.0, "displacement": 140.0, "weight": 2401.0} +train246_chevrolet_chevelle_malibu_classic {"horsepower": 140.0, "acceleration": 13.0, "cylinders": 8.0, "displacement": 305.0, "weight": 4215.0} +train247_buick_skylark {"horsepower": 84.0, "acceleration": 16.4, "cylinders": 4.0, "displacement": 151.0, "weight": 2635.0} +train248_renault_5_gtl {"horsepower": 58.0, "acceleration": 18.6, "cylinders": 4.0, "displacement": 79.0, "weight": 1825.0} +train249_plymouth_duster {"horsepower": 95.0, "acceleration": 15.5, "cylinders": 6.0, "displacement": 198.0, "weight": 2833.0} +train250_buick_regal_sport_coupe_(turbo) {"horsepower": 165.0, "acceleration": 13.4, "cylinders": 6.0, "displacement": 231.0, "weight": 3445.0} +train251_mercury_lynx_l {"horsepower": 70.0, "acceleration": 17.3, "cylinders": 4.0, "displacement": 98.0, "weight": 2125.0} +train252_dodge_aspen_6 {"horsepower": 110.0, "acceleration": 16.6, "cylinders": 6.0, "displacement": 225.0, "weight": 3360.0} +train253_oldsmobile_vista_cruiser {"horsepower": 180.0, "acceleration": 12.5, "cylinders": 8.0, "displacement": 350.0, "weight": 4499.0} +train254_amc_pacer_d/l {"horsepower": 95.0, "acceleration": 17.8, "cylinders": 6.0, "displacement": 258.0, "weight": 3193.0} +train255_ford_fairmont_4 {"horsepower": 88.0, "acceleration": 17.3, "cylinders": 4.0, "displacement": 140.0, "weight": 2890.0} +train256_chevrolet_chevelle_concours_(sw) {"horsepower": 130.0, "acceleration": 14.0, "cylinders": 8.0, "displacement": 307.0, "weight": 4098.0} +train257_honda_accord {"horsepower": 72.0, "acceleration": 17.0, "cylinders": 4.0, "displacement": 107.0, "weight": 2290.0} +train258_dodge_colt_hardtop {"horsepower": 80.0, "acceleration": 17.0, "cylinders": 4.0, "displacement": 97.5, "weight": 2126.0} +train259_amc_hornet_sportabout_(sw) {"horsepower": 110.0, "acceleration": 13.5, "cylinders": 6.0, "displacement": 258.0, "weight": 2962.0} +train260_toyota_corona {"horsepower": 95.0, "acceleration": 14.0, "cylinders": 4.0, "displacement": 113.0, "weight": 2228.0} +train261_ford_fiesta {"horsepower": 66.0, "acceleration": 14.4, "cylinders": 4.0, "displacement": 98.0, "weight": 1800.0} +train262_datsun_280-zx {"horsepower": 132.0, "acceleration": 11.4, "cylinders": 6.0, "displacement": 168.0, "weight": 2910.0} +train263_chevrolet_impala {"horsepower": 165.0, "acceleration": 12.0, "cylinders": 8.0, "displacement": 350.0, "weight": 4274.0} +train264_toyota_corolla {"horsepower": 75.0, "acceleration": 16.4, "cylinders": 4.0, "displacement": 97.0, "weight": 2155.0} +train265_chevrolet_chevelle_malibu {"horsepower": 100.0, "acceleration": 15.5, "cylinders": 6.0, "displacement": 250.0, "weight": 3329.0} +train266_volvo_diesel {"horsepower": 76.0, "acceleration": 19.6, "cylinders": 6.0, "displacement": 145.0, "weight": 3160.0} +train267_pontiac_phoenix {"horsepower": 90.0, "acceleration": 18.0, "cylinders": 4.0, "displacement": 151.0, "weight": 2735.0} +train268_dodge_colt_(sw) {"horsepower": 80.0, "acceleration": 15.0, "cylinders": 4.0, "displacement": 98.0, "weight": 2164.0} +train269_vokswagen_rabbit {"horsepower": 62.0, "acceleration": 15.3, "cylinders": 4.0, "displacement": 89.0, "weight": 1845.0} +train270_peugeot_504 {"horsepower": 71.0, "acceleration": 24.8, "cylinders": 4.0, "displacement": 141.0, "weight": 3190.0} +train271_chevrolet_vega_2300 {"horsepower": 90.0, "acceleration": 15.5, "cylinders": 4.0, "displacement": 140.0, "weight": 2264.0} +train272_ford_fairmont_(auto) {"horsepower": 85.0, "acceleration": 15.8, "cylinders": 6.0, "displacement": 200.0, "weight": 2965.0} +train273_plymouth_grand_fury {"horsepower": 150.0, "acceleration": 14.5, "cylinders": 8.0, "displacement": 318.0, "weight": 4498.0} +train274_plymouth_'cuda_340 {"horsepower": 160.0, "acceleration": 8.0, "cylinders": 8.0, "displacement": 340.0, "weight": 3609.0} +train275_ford_granada_l {"horsepower": 112.0, "acceleration": 14.7, "cylinders": 6.0, "displacement": 232.0, "weight": 2835.0} +train276_volkswagen_rabbit_custom {"horsepower": 78.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 97.0, "weight": 1940.0} +train277_honda_civic_cvcc {"horsepower": 53.0, "acceleration": 17.5, "cylinders": 4.0, "displacement": 91.0, "weight": 1795.0} +train278_chevrolet_nova_custom {"horsepower": 100.0, "acceleration": 18.0, "cylinders": 6.0, "displacement": 250.0, "weight": 3278.0} +train279_honda_civic_cvcc {"horsepower": 60.0, "acceleration": 16.4, "cylinders": 4.0, "displacement": 91.0, "weight": 1800.0} +train280_volkswagen_type_3 {"horsepower": 54.0, "acceleration": 23.5, "cylinders": 4.0, "displacement": 97.0, "weight": 2254.0} +train281_toyota_corolla_tercel {"horsepower": 60.0, "acceleration": 18.8, "cylinders": 4.0, "displacement": 89.0, "weight": 1968.0} +train282_datsun_pl510 {"horsepower": 88.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 97.0, "weight": 2130.0} +train283_ford_maverick {"horsepower": 81.0, "acceleration": 17.6, "cylinders": 6.0, "displacement": 200.0, "weight": 3012.0} +train284_dodge_omni {"horsepower": 75.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 105.0, "weight": 2230.0} +train285_plymouth_volare_custom {"horsepower": 100.0, "acceleration": 17.7, "cylinders": 6.0, "displacement": 225.0, "weight": 3630.0} +train286_datsun_710 {"horsepower": 61.0, "acceleration": 19.0, "cylinders": 4.0, "displacement": 83.0, "weight": 2003.0} +train287_honda_civic_1300 {"horsepower": 60.0, "acceleration": 16.1, "cylinders": 4.0, "displacement": 81.0, "weight": 1760.0} +train288_saab_99le {"horsepower": 110.0, "acceleration": 14.0, "cylinders": 4.0, "displacement": 121.0, "weight": 2660.0} +train289_honda_prelude {"horsepower": 75.0, "acceleration": 14.4, "cylinders": 4.0, "displacement": 107.0, "weight": 2210.0} +train290_buick_skylark_limited {"horsepower": 90.0, "acceleration": 16.0, "cylinders": 4.0, "displacement": 151.0, "weight": 2670.0} +train291_pontiac_catalina {"horsepower": 225.0, "acceleration": 10.0, "cylinders": 8.0, "displacement": 455.0, "weight": 4425.0} +train292_mazda_rx-4 {"horsepower": 110.0, "acceleration": 13.5, "cylinders": 3.0, "displacement": 80.0, "weight": 2720.0} +train293_volkswagen_super_beetle {"horsepower": 46.0, "acceleration": 21.0, "cylinders": 4.0, "displacement": 97.0, "weight": 1950.0} +train294_ford_fairmont_(man) {"horsepower": 88.0, "acceleration": 15.4, "cylinders": 4.0, "displacement": 140.0, "weight": 2720.0} +train295_fiat_131 {"horsepower": 86.0, "acceleration": 15.5, "cylinders": 4.0, "displacement": 107.0, "weight": 2464.0} +train296_ford_escort_4w {"horsepower": 65.0, "acceleration": 16.2, "cylinders": 4.0, "displacement": 98.0, "weight": 2045.0} +train297_plymouth_horizon_miser {"horsepower": 63.0, "acceleration": 14.7, "cylinders": 4.0, "displacement": 105.0, "weight": 2125.0} +train298_ford_mustang_ii {"horsepower": 129.0, "acceleration": 12.0, "cylinders": 8.0, "displacement": 302.0, "weight": 3169.0} +train299_saab_99e {"horsepower": 95.0, "acceleration": 17.5, "cylinders": 4.0, "displacement": 104.0, "weight": 2375.0} +train300_fiat_124b {"horsepower": 76.0, "acceleration": 14.5, "cylinders": 4.0, "displacement": 88.0, "weight": 2065.0} diff --git a/creg/test_data/auto-mpg.trainresp b/creg/test_data/auto-mpg.trainresp new file mode 100644 index 00000000..ece7fa37 --- /dev/null +++ b/creg/test_data/auto-mpg.trainresp @@ -0,0 +1,300 @@ +train1_buick_century_350 13.0 +train2_audi_100_ls 24.0 +train3_chrysler_newport_royal 13.0 +train4_mercury_zephyr_6 19.8 +train5_volkswagen_model_111 27.0 +train6_dodge_monaco_brougham 15.5 +train7_mercedes-benz_240d 30.0 +train8_datsun_510_(sw) 28.0 +train9_opel_manta 24.0 +train10_renault_12_(sw) 26.0 +train11_chevrolet_nova 15.0 +train12_plymouth_arrow_gs 25.5 +train13_toyota_mark_ii 19.0 +train14_chevrolet_caprice_classic 13.0 +train15_ford_maverick 18.0 +train16_pontiac_lemans_v6 21.5 +train17_ford_granada_gl 20.2 +train18_chevrolet_monte_carlo_landau 15.5 +train19_subaru 26.0 +train20_volkswagen_411_(sw) 22.0 +train21_chrysler_lebaron_salon 17.6 +train22_volkswagen_jetta 33.0 +train23_dodge_coronet_brougham 16.0 +train24_pontiac_safari_(sw) 13.0 +train25_mazda_rx-7_gs 23.7 +train26_datsun_210 40.8 +train27_vw_rabbit_c_(diesel) 44.3 +train28_nissan_stanza_xe 36.0 +train29_audi_5000 20.3 +train30_chevrolet_malibu 13.0 +train31_mercury_capri_v6 21.0 +train32_datsun_b210_gx 39.4 +train33_volkswagen_dasher 26.0 +train34_volvo_145e_(sw) 18.0 +train35_chrysler_lebaron_medallion 26.0 +train36_pontiac_catalina 16.0 +train37_toyota_tercel 37.7 +train38_datsun_f-10_hatchback 33.5 +train39_chrysler_lebaron_town_@_country_(sw) 18.5 +train40_buick_century 22.4 +train41_amc_matador_(sw) 15.0 +train42_honda_civic 38.0 +train43_dodge_coronet_custom_(sw) 14.0 +train44_bmw_320i 21.5 +train45_mercury_marquis 11.0 +train46_amc_matador_(sw) 14.0 +train47_ford_ltd 13.0 +train48_toyota_corolla_1200 31.0 +train49_amc_ambassador_brougham 13.0 +train50_ford_galaxie_500 14.0 +train51_amc_concord_d/l 18.1 +train52_amc_matador 18.0 +train53_toyota_corona 24.0 +train54_plymouth_reliant 27.2 +train55_ford_pinto 18.0 +train56_datsun_810 22.0 +train57_fiat_x1.9 31.0 +train58_mercury_zephyr 20.8 +train59_toyota_corolla_1600_(sw) 27.0 +train60_chevrolet_chevette 30.0 +train61_toyota_cressida 25.4 +train62_toyota_corolla 34.0 +train63_datsun_710 24.0 +train64_mercury_grand_marquis 16.5 +train65_plymouth_champ 39.0 +train66_datsun_200-sx 23.9 +train67_chevrolet_nova 18.0 +train68_hi_1200d 9.0 +train69_ford_country 12.0 +train70_plymouth_valiant 22.0 +train71_amc_gremlin 20.0 +train72_ford_pinto_runabout 21.0 +train73_chevrolet_monte_carlo_landau 19.2 +train74_amc_concord_dl_6 20.2 +train75_pontiac_firebird 19.0 +train76_chevrolet_cavalier_2-door 34.0 +train77_mercedes-benz_280s 16.5 +train78_dodge_d200 11.0 +train79_amc_hornet 18.0 +train80_plymouth_reliant 30.0 +train81_amc_hornet 19.0 +train82_toyota_corona_liftback 29.8 +train83_ford_maverick 15.0 +train84_cadillac_eldorado 23.0 +train85_mercury_monarch 15.0 +train86_buick_skylark 20.5 +train87_chevrolet_cavalier 28.0 +train88_chevrolet_vega 20.0 +train89_ford_torino 17.0 +train90_chevrolet_chevelle_malibu 18.0 +train91_toyota_corona 31.0 +train92_buick_opel_isuzu_deluxe 30.0 +train93_volvo_244dl 22.0 +train94_opel_1900 25.0 +train95_peugeot_304 30.0 +train96_toyota_celica_gt 32.0 +train97_buick_estate_wagon_(sw) 16.9 +train98_volvo_245 20.0 +train99_chevrolet_impala 11.0 +train100_chevrolet_bel_air 15.0 +train101_datsun_pl510 27.0 +train102_saab_99gle 21.6 +train103_renault_12tl 27.0 +train104_pontiac_catalina 14.0 +train105_subaru 32.3 +train106_chevrolet_chevette 32.1 +train107_saab_99le 25.0 +train108_amc_rebel_sst 16.0 +train109_ford_gran_torino 16.0 +train110_ford_mustang_ii_2+2 25.5 +train111_ford_pinto 26.0 +train112_toyota_corolla 32.4 +train113_toyota_carina 20.0 +train114_amc_hornet 18.0 +train115_plymouth_horizon_4 34.7 +train116_chevrolet_nova 22.0 +train117_fiat_128 24.0 +train118_dodge_coronet_custom 15.0 +train119_volkswagen_rabbit 29.5 +train120_chevrolet_camaro 27.0 +train121_ford_gran_torino_(sw) 13.0 +train122_subaru_dl 30.0 +train123_mazda_626 31.3 +train124_oldsmobile_cutlass_salon_brougham 23.9 +train125_volvo_144ea 19.0 +train126_plymouth_satellite 18.0 +train127_amc_gremlin 18.0 +train128_chevrolet_malibu_classic_(sw) 19.2 +train129_toyota_corolla 29.0 +train130_buick_skylark_320 15.0 +train131_toyota_corona_mark_ii 24.0 +train132_ford_gran_torino 14.5 +train133_dodge_colt 26.0 +train134_pontiac_ventura_sj 18.5 +train135_oldsmobile_cutlass_ls 26.6 +train136_toyouta_corona_mark_ii_(sw) 23.0 +train137_amc_gremlin 19.0 +train138_chevrolet_malibu 20.5 +train139_oldsmobile_starfire_sx 23.8 +train140_amc_ambassador_dpl 15.0 +train141_volkswagen_scirocco 31.5 +train142_plymouth_satellite_custom_(sw) 14.0 +train143_toyota_corolla_liftback 26.0 +train144_ford_fairmont 26.4 +train145_plymouth_fury_gran_sedan 14.0 +train146_buick_century_luxus_(sw) 13.0 +train147_ford_granada_ghia 18.0 +train148_dodge_charger_2.2 36.0 +train149_chevrolet_concours 17.5 +train150_toyota_corona 27.5 +train151_pontiac_grand_prix_lj 16.0 +train152_dodge_colt_m/m 33.5 +train153_pontiac_astro 23.0 +train154_amc_gremlin 21.0 +train155_fiat_strada_custom 37.3 +train156_toyota_corona_hardtop 24.0 +train157_datsun_b210 31.0 +train158_volkswagen_dasher 30.5 +train159_plymouth_duster 23.0 +train160_mazda_626 31.6 +train161_buick_lesabre_custom 13.0 +train162_chevrolet_monte_carlo 15.0 +train163_peugeot_505s_turbo_diesel 28.1 +train164_datsun_610 22.0 +train165_ford_granada 18.5 +train166_pontiac_grand_prix 16.0 +train167_cadillac_seville 16.5 +train168_amc_concord 24.3 +train169_ford_mustang_gl 27.0 +train170_amc_matador 15.0 +train171_ford_gran_torino_(sw) 14.0 +train172_datsun_510_hatchback 37.0 +train173_dodge_rampage 32.0 +train174_datsun_b-210 32.0 +train175_datsun_210_mpg 37.0 +train176_plymouth_horizon_tc3 34.5 +train177_ford_pinto 19.0 +train178_chrysler_new_yorker_brougham 13.0 +train179_chrysler_cordoba 15.5 +train180_oldsmobile_cutlass_salon_brougham 19.9 +train181_plymouth_satellite_custom 16.0 +train182_maxda_glc_deluxe 34.1 +train183_datsun_1200 35.0 +train184_ford_pinto 26.5 +train185_volkswagen_rabbit_l 36.0 +train186_audi_100ls 23.0 +train187_chevrolet_citation 28.8 +train188_buick_electra_225_custom 12.0 +train189_datsun_200sx 32.9 +train190_dodge_colt_hatchback_custom 35.7 +train191_honda_accord_lx 29.5 +train192_plymouth_custom_suburb 13.0 +train193_toyota_mark_ii 20.0 +train194_oldsmobile_omega_brougham 26.8 +train195_ford_ltd_landau 17.6 +train196_chevy_c10 13.0 +train197_dodge_colt 28.0 +train198_oldsmobile_cutlass_supreme 17.0 +train199_ford_pinto_(sw) 22.0 +train200_chevrolet_vega 25.0 +train201_pontiac_catalina_brougham 14.0 +train202_ford_futura 18.1 +train203_honda_civic 33.0 +train204_ford_mustang 18.0 +train205_chevrolet_vega_(sw) 22.0 +train206_buick_century 17.0 +train207_dodge_aspen 19.1 +train208_subaru_dl 33.8 +train209_plymouth_fury_iii 15.0 +train210_fiat_128 29.0 +train211_volvo_264gl 17.0 +train212_dodge_aries_se 29.0 +train213_datsun_510 27.2 +train214_chevrolet_chevelle_malibu_classic 16.0 +train215_ford_ranger 28.0 +train216_vw_dasher_(diesel) 43.4 +train217_chevy_c20 10.0 +train218_buick_skyhawk 21.0 +train219_peugeot_504 23.0 +train220_ford_f250 10.0 +train221_dodge_diplomat 19.4 +train222_honda_civic_(auto) 32.0 +train223_chevrolet_caprice_classic 17.0 +train224_toyota_corolla_1200 32.0 +train225_plymouth_volare_premier_v8 13.0 +train226_opel_manta 26.0 +train227_mercedes_benz_300d 25.4 +train228_chevrolet_cavalier_wagon 27.0 +train229_vw_rabbit 29.0 +train230_toyota_corolla 32.2 +train231_buick_estate_wagon_(sw) 14.0 +train232_ford_f108 13.0 +train233_oldsmobile_omega 11.0 +train234_oldsmobile_cutlass_ciera_(diesel) 38.0 +train235_chevrolet_impala 14.0 +train236_volkswagen_dasher 25.0 +train237_ford_fairmont_futura 24.0 +train238_datsun_210 31.8 +train239_honda_accord_cvcc 31.5 +train240_mazda_glc 46.6 +train241_chevrolet_citation 28.0 +train242_datsun_810_maxima 24.2 +train243_ford_maverick 21.0 +train244_fiat_124_sport_coupe 26.0 +train245_chevrolet_vega 21.0 +train246_chevrolet_chevelle_malibu_classic 17.5 +train247_buick_skylark 26.6 +train248_renault_5_gtl 36.0 +train249_plymouth_duster 22.0 +train250_buick_regal_sport_coupe_(turbo) 17.7 +train251_mercury_lynx_l 36.0 +train252_dodge_aspen_6 20.6 +train253_oldsmobile_vista_cruiser 12.0 +train254_amc_pacer_d/l 17.5 +train255_ford_fairmont_4 22.3 +train256_chevrolet_chevelle_concours_(sw) 13.0 +train257_honda_accord 32.4 +train258_dodge_colt_hardtop 25.0 +train259_amc_hornet_sportabout_(sw) 18.0 +train260_toyota_corona 25.0 +train261_ford_fiesta 36.1 +train262_datsun_280-zx 32.7 +train263_chevrolet_impala 13.0 +train264_toyota_corolla 28.0 +train265_chevrolet_chevelle_malibu 17.0 +train266_volvo_diesel 30.7 +train267_pontiac_phoenix 27.0 +train268_dodge_colt_(sw) 28.0 +train269_vokswagen_rabbit 29.8 +train270_peugeot_504 27.2 +train271_chevrolet_vega_2300 28.0 +train272_ford_fairmont_(auto) 20.2 +train273_plymouth_grand_fury 16.0 +train274_plymouth_'cuda_340 14.0 +train275_ford_granada_l 22.0 +train276_volkswagen_rabbit_custom 29.0 +train277_honda_civic_cvcc 33.0 +train278_chevrolet_nova_custom 16.0 +train279_honda_civic_cvcc 36.1 +train280_volkswagen_type_3 23.0 +train281_toyota_corolla_tercel 38.1 +train282_datsun_pl510 27.0 +train283_ford_maverick 24.0 +train284_dodge_omni 30.9 +train285_plymouth_volare_custom 19.0 +train286_datsun_710 32.0 +train287_honda_civic_1300 35.1 +train288_saab_99le 24.0 +train289_honda_prelude 33.7 +train290_buick_skylark_limited 28.4 +train291_pontiac_catalina 14.0 +train292_mazda_rx-4 21.5 +train293_volkswagen_super_beetle 26.0 +train294_ford_fairmont_(man) 25.1 +train295_fiat_131 28.0 +train296_ford_escort_4w 34.4 +train297_plymouth_horizon_miser 38.0 +train298_ford_mustang_ii 13.0 +train299_saab_99e 25.0 +train300_fiat_124b 30.0 -- cgit v1.2.3