/** * Simple shape detector program. * It loads an image and tries to find simple shapes (rectangle, triangle, circle, etc) in it. * This program is a modified version of `squares.cpp` found in the OpenCV sample dir. */ #include #include #include #include /** * Helper function to find a cosine of angle between vectors * from pt0->pt1 and pt0->pt2 */ static double angle(cv::Point pt1, cv::Point pt2, cv::Point pt0) { double dx1 = pt1.x - pt0.x; double dy1 = pt1.y - pt0.y; double dx2 = pt2.x - pt0.x; double dy2 = pt2.y - pt0.y; return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10); } /** * Helper function to display text in the center of a contour */ void setLabel(cv::Mat& im, const std::string label, std::vector& contour) { int fontface = cv::FONT_HERSHEY_SIMPLEX; double scale = 0.4; int thickness = 1; int baseline = 0; cv::Size text = cv::getTextSize(label, fontface, scale, thickness, &baseline); cv::Rect r = cv::boundingRect(contour); cv::Point pt(r.x + ((r.width - text.width) / 2), r.y + ((r.height + text.height) / 2)); cv::rectangle(im, pt + cv::Point(0, baseline), pt + cv::Point(text.width, -text.height), CV_RGB(255,255,255), CV_FILLED); cv::putText(im, label, pt, fontface, scale, CV_RGB(0,0,0), thickness, 8); } int main() { //cv::Mat src = cv::imread("polygon.png"); cv::Mat src = cv::imread("assets/basic-shapes-2.png"); if (src.empty()) return -1; // Convert to grayscale cv::Mat gray; cv::cvtColor(src, gray, CV_BGR2GRAY); // Use Canny instead of threshold to catch squares with gradient shading cv::Mat bw; cv::Canny(gray, bw, 0, 50, 5); // Find contours std::vector > contours; cv::findContours(bw.clone(), contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); std::vector approx; cv::Mat dst = src.clone(); for (int i = 0; i < contours.size(); i++) { // Approximate contour with accuracy proportional // to the contour perimeter cv::approxPolyDP(cv::Mat(contours[i]), approx, cv::arcLength(cv::Mat(contours[i]), true)*0.02, true); // Skip small or non-convex objects if (std::fabs(cv::contourArea(contours[i])) < 100 || !cv::isContourConvex(approx)) continue; if (approx.size() == 3) { setLabel(dst, "TRI", contours[i]); // Triangles } else if (approx.size() >= 4 && approx.size() <= 6) { // Number of vertices of polygonal curve int vtc = approx.size(); // Get the cosines of all corners std::vector cos; for (int j = 2; j < vtc+1; j++) cos.push_back(angle(approx[j%vtc], approx[j-2], approx[j-1])); // Sort ascending the cosine values std::sort(cos.begin(), cos.end()); // Get the lowest and the highest cosine double mincos = cos.front(); double maxcos = cos.back(); // Use the degrees obtained above and the number of vertices // to determine the shape of the contour if (vtc == 4 && mincos >= -0.1 && maxcos <= 0.3) setLabel(dst, "RECT", contours[i]); else if (vtc == 5 && mincos >= -0.34 && maxcos <= -0.27) setLabel(dst, "PENTA", contours[i]); else if (vtc == 6 && mincos >= -0.55 && maxcos <= -0.45) setLabel(dst, "HEXA", contours[i]); } else { // Detect and label circles double area = cv::contourArea(contours[i]); cv::Rect r = cv::boundingRect(contours[i]); int radius = r.width / 2; if (std::abs(1 - ((double)r.width / r.height)) <= 0.2 && std::abs(1 - (area / (CV_PI * std::pow(radius, 2)))) <= 0.2) setLabel(dst, "CIR", contours[i]); } } cv::imshow("src", src); cv::imshow("dst", dst); cv::waitKey(0); return 0; }